Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 1;136(10):1128-1136.
doi: 10.1001/jamaophthalmol.2018.3190.

Role of the Complement System in Chronic Central Serous Chorioretinopathy: A Genome-Wide Association Study

Affiliations

Role of the Complement System in Chronic Central Serous Chorioretinopathy: A Genome-Wide Association Study

Rosa L Schellevis et al. JAMA Ophthalmol. .

Abstract

Importance: To date, several targeted genetic studies on chronic central serous chorioretinopathy (cCSC) have been performed; however, unbiased genome-wide studies into the genetics of cCSC have not been reported. To discover new genetic loci associated with cCSC and to better understand the causative mechanism of this disease, we performed a genome-wide association study (GWAS) on patients with cCSC.

Objective: To discover new genetic loci and pathways associated with cCSC and to predict the association of genetic variants with gene expression in patients with cCSC.

Design, setting, and participants: This case-control GWAS was completed in the general community, 3 referral university medical centers, and outpatient care on Europeans individuals with cCSC and population-based control participants. Genotype data was collected from May 2013 to August 2017, and data analysis occurred from August 2017 to November 2017.

Main outcomes and measures: Associations of single-nucleotide polymorphisms, haplotypes, genetic pathways, and predicted gene expression with cCSC.

Results: A total of 521 patients with cCSC (median age, 51 years; interquartile range [IQR], 44-59 years; 420 [80.6%] male) and 3577 European population-based control participants (median age, 52 years; IQR, 37-71 years; 1630 [45.6%] male) were included. One locus on chromosome 1 at the complement factor H (CFH) gene reached genome-wide significance and was associated with an increased risk of cCSC (rs1329428; odds ratio [OR], 1.57 [95% CI, 1.38-1.80]; P = 3.12 × 10-11). The CFH haplotypes H1 and H3 were protective for cCSC (H1: OR, 0.64 [95% CI, 0.53-0.77]; P = 2.18 × 10-6; H3: OR, 0.54 [95% CI, 0.42-0.70]; P = 2.49 × 10-6), whereas haplotypes H2, H4, H5, and the aggregate of rare CFH haplotypes conferred increased risk (H2: OR, 1.57 [95% CI, 1.30-1.89]; P = 2.18 × 10-6; H4: OR, 1.43 [95% CI, 1.13-1.80]; P = 2.49 × 10-3; H5: OR, 1.80 [95% CI, 1.36-2.39]; P = 4.61 × 10-5; rare haplotypes: OR, 1.99 [95% CI, 1.43-2.77]; P = 4.59 × 10-5). Pathway analyses showed involvement of the complement cascade and alternative open reading frame (ARF) pathway in cCSC. Using PrediXcan, we identified changes in predicted expression of complement genes CFH, complement factor H related 1 (CFHR1), complement factor related 4 (CFHR4), and membrane cofactor protein (MCP/CD46). Additionally, the potassium sodium-activated channel subfamily T member 2 (KCNT2) and tumor necrosis factor receptor superfamily member 10a (TNFRSF10A) genes were differentially expressed in patients with cCSC.

Conclusions and relevance: In this GWAS on cCSC, we identified a locus on chromosome 1 at the CFH gene that was significantly associated with cCSC, and we report protective and risk-conferring haplotypes in this gene. Pathway analyses were enriched for complement genes, and gene expression analysis suggests a role for CFH, CFHR1, CFHR4, CD46, KCNT2, and TNFRSF10A in the disease. Taken together, these results underscore the potential importance of the complement pathway in the causative mechanisms of cCSC.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr den Hollander reports grants from Macula Vision Research Foundation during the conduct of the study, and personal fees from Ionis Pharmaceuticals outside the submitted work. Dr Fauser reports receiving support from Roche Pharmaceuticals outside the submitted work. No other disclosures were reported.

Figures

Figure.
Figure.. Manhattan Plot of Genome-Wide Association Study on 521 Patients With Chronic Central Serous Chorioretinopathy and 3577 Population Control Participants
Genome-wide association analysis was performed correcting for sex and 2 principal components. The genome-wide significant signals are depicted in red (significant with cutoff value set at P < 5 × 10−8), whereas the suggestive variants are depicted in blue (significant with cutoff value set at P < 1 × 10−6).

Comment in

References

    1. Gemenetzi M, De Salvo G, Lotery AJ. Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye (Lond). 2010;24(12):1743-1756. doi:10.1038/eye.2010.130 - DOI - PubMed
    1. Wang M, Munch IC, Hasler PW, Prünte C, Larsen M. Central serous chorioretinopathy. Acta Ophthalmol. 2008;86(2):126-145. doi:10.1111/j.1600-0420.2007.00889.x - DOI - PubMed
    1. Yannuzzi LA. Central serous chorioretinopathy: a personal perspective. Am J Ophthalmol. 2010;149(3):361-363. doi:10.1016/j.ajo.2009.11.017 - DOI - PubMed
    1. Daruich A, Matet A, Dirani A, et al. . Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82-118. doi:10.1016/j.preteyeres.2015.05.003 - DOI - PubMed
    1. Breukink MB, Dingemans AJ, den Hollander AI, et al. . Chronic central serous chorioretinopathy: long-term follow-up and vision-related quality of life. Clin Ophthalmol. 2016;11:39-46. doi:10.2147/OPTH.S115685 - DOI - PMC - PubMed

Publication types