Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Apr 5;261(10):4529-34.

Na+/H+ exchange in Ehrlich ascites tumor cells. Regulation by extracellular ATP and 12-O-tetradecanoylphorbol 13-acetate

  • PMID: 3007462
Free article

Na+/H+ exchange in Ehrlich ascites tumor cells. Regulation by extracellular ATP and 12-O-tetradecanoylphorbol 13-acetate

E Wiener et al. J Biol Chem. .
Free article

Abstract

The effects of extracellular ATP and/or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on the intracellular pH of Ehrlich ascites tumor cells were measured using both distribution of [14C]5,5-dimethyloxazolidine-2,4-dione, and the fluorescent indicator 5(6)-carboxyfluorescein. Micromolar concentrations of extracellular ATP induce a biphasic change in the intracellular pH characterized by a rapid acidification of 0.04 pH units followed by an alkalinization of 0.11 pH units. Concurrently with the alkalinization, an increase in the total cellular [Na+] from 37.5 to 45.0 mM is observed. The pH change is half-maximally activated by 0.5-2.5 microM extracellular ATP. The intracellular alkalinization, but not the initial acidification, phase requires extracellular Na+, with half-maximal alkalinization in the presence of 24-32 mM Na+, and is inhibited by amiloride. Exposure of Ehrlich ascites tumor cells to TPA alone produces a slight alkalinization of approximately 0.04 pH units. Conversely, preincubation of the cells with TPA partially inhibits the ATP-induced changes in intracellular pH. Under identical conditions TPA also inhibits the ATP-induced increase in the cytosolic [Ca2+]. The half-maximal dose for both effects is produced by 3-10 nM TPA. These data indicate that extracellular ATP triggers the activation of Na+/H+ exchange. Furthermore, activation of protein kinase C mediates at least part of the Na+/H+ exchange, although a second mechanism may also exist.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources