Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct:106:175-184.
doi: 10.1016/j.neunet.2018.07.008. Epub 2018 Jul 19.

Training sparse least squares support vector machines by the QR decomposition

Affiliations

Training sparse least squares support vector machines by the QR decomposition

Xiao-Lei Xia. Neural Netw. 2018 Oct.

Abstract

The solution of an LS-SVM has suffered from the problem of non-sparseness. The paper proposed to apply the KMP algorithm, with the number of support vectors as the regularization parameter, to tackle the non-sparseness problem of LS-SVMs. The idea of the kernel matching pursuit (KMP) algorithm was first revisited from the perspective of the QR decomposition of the kernel matrix on the training set. Strategies are further developed to select those support vectors which minimize the leave-one-out cross validation error of the resultant sparse LS-SVM model. It is demonstrated that the LOOCV of the sparse LS-SVM can be computed accurately and efficiently. Experimental results on benchmark datasets showed that, compared to the SVM and variants sparse LS-SVM models, the proposed sparse LS-SVM models developed upon KMP algorithms maintained comparable performance in terms of both accuracy and sparsity.

Keywords: Kernel matching pursuit; Least-squares support vector machines; QR decomposition; Sparseness.

PubMed Disclaimer

LinkOut - more resources