Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul 20:9:1042.
doi: 10.3389/fpls.2018.01042. eCollection 2018.

Modulation of Phytohormone Signaling: A Primary Function of Flavonoids in Plant-Environment Interactions

Affiliations
Review

Modulation of Phytohormone Signaling: A Primary Function of Flavonoids in Plant-Environment Interactions

Cecilia Brunetti et al. Front Plant Sci. .

Abstract

The old observation that plants preferentially synthesize flavonoids with respect to the wide range of phenylpropanoid structures when exposed to high doses of UV-B radiation has supported the view that flavonoids are primarily involved in absorbing the shortest solar wavelengths in photoprotection. However, there is compelling evidence that the biosynthesis of flavonoids is similarly upregulated in response to high photosynthetically active radiation in the presence or in the absence of UV-radiation, as well as in response to excess metal ions and photosynthetic redox unbalance. This supports the hypothesis that flavonoids may play prominent roles as scavengers of reactive oxygen species (ROS) generated by light excess. These 'antioxidant' functions of flavonoids appears robust, as maintained between different life kingdoms, e.g., plants and animals. The ability of flavonoids to buffer stress-induced large alterations in ROS homeostasis and, hence, to modulate the ROS-signaling cascade, is at the base of well-known functions of flavonoids as developmental regulators in both plants and animals. There is both long and very recent evidence indeed that, in plants, flavonoids may strongly affect phytohormone signaling, e.g., auxin and abscisic acid signaling. This function is served by flavonoids in a very low (nM) concentration range and involves the ability of flavonoids to inhibit the activity of a wide range of protein kinases, including but not limited to mitogen-activated protein kinases, that operate downstream of ROS in the regulation of cell growth and differentiation. For example, flavonoids inhibit the transport of auxin acting on serine-threonine PINOID (PID) kinases that regulate the localization of auxin efflux facilitators PIN-formed (PIN) proteins. Flavonoids may also determine auxin gradients at cellular and tissue levels, and the consequential developmental processes, by reducing auxin catabolism. Recent observations lead to the hypothesis that regulation/modulation of auxin transport/signaling is likely an ancestral function of flavonoids. The antagonistic functions of flavonoids on ABA-induced stomatal closure also offer novel hypotheses on the functional role of flavonoids in plant-environment interactions, in early as well as in modern terrestrial plants. Here, we surmise that the regulation of phytohormone signaling might have represented a primary function served by flavonols for the conquest of land by plants and it is still of major significance for the successful acclimation of modern terrestrial plants to a severe excess of radiant energy.

Keywords: abscisic acid (ABA); auxin; early land plants; flavonols; mitogen-activated protein kinases (MAPKs); reactive oxygen species (ROS).

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
A proposed regulatory circuit involving auxin (IAA), abscisic acid (ABA), and flavonols (here represented by quercetin) under high light stress. High light activates the biosynthesis of IAA and ABA and, hence, the biosynthesis of flavonols. IAA is indeed synthesized at the cytoplasmic face of the ER, the very same site of flavonoid biosynthesis, and enhanced ABA biosynthesis under high light conditions mostly originates from de-glucosylation of ABA-GE, through the action of β-glucosidase1 (BG1) located at the ER (Lee et al., 2006; Tattini et al., 2017). The IAA- and ABA-induced flavonol biosynthesis might occur through the involvement of the bZIP transcription factor HY5 that, in turn, activates the expression of MYB12 (Lewis et al., 2011; Tossi et al., 2012). Flavonols distributed in different cellular compartments regulate the IAA and ABA-signaling. ER-located flavonoids may inhibit the activity of PIN5 (and perhaps of PIN6 and PIN8) auxin transport protein that escorts auxin into the ER lumen (Mravec et al., 2009). Flavonols are also transported to the ER lumen, by ABC-type and MATE proteins, and then to the plasma membrane (PM, Kitamura, 2006), where they inhibit the cell-to-cell auxin movement by acting on ‘long’ PINs (but also on PIN6, which has a dual, ER and PM localization, Simon et al., 2016). Flavonols may also alter the auxin catabolism by negatively affecting the activity of DIOXYGENASE for AUXIN OXIDATION (DAO), and hence the production of oxidized auxin (oxIAA, Zhang et al., 2016; Zhang and Peer, 2017), as well as by limiting the generation of IAA radicals (Mathesius, 2001). Chloroplast-located flavonols may complement the action of primary antioxidants (e.g., ascorbate peroxidase) the activity of which decreases under severe light excess (Mullineaux and Karpinski, 2002; Tattini et al., 2015). Flavonols may affect singlet oxygen (1O2) and H2O2-induced retrograde signaling, which, in turn may lead to programmed cell death (Agati et al., 2007, 2013; Fischer et al., 2007). This may occur through not only ROS scavenging, but also by strongly interacting with cytoplasmic- and nuclear-distributed MAPKs. Translocation of MAPKs from the cytoplasm to nucleus assists indeed cell re-programming under stressful conditions (Komis et al., 2018). Nuclear flavonols may indeed chelate transition metal ions (Hernández et al., 2009), such Fe (II), thereby preventing the massive generation of the highly reactive hydroxyl radical (OH) through the Fenton reaction [Fe(II) + H2O2 → Fe(III) + OH + OH-]. Finally, vacuolar flavonols may scavenge H2O2 that freely escapes from the chloroplast at considerable rates under severe light excess (Mubarakshina et al., 2010), serving as substrates for vacuolar peroxidase and, then being recycled back to their original (reduced) forms by ascorbate (Sakihama et al., 2000). The tight control of cellular and inter-cellular auxin homeostasis by flavonols determines auxin gradients that regulate cell growth and differentiation, though we cannot exclude a direct involvement of nuclear-located flavonols on cell re-programming in response to severe light excess. Flavonols may scavenge H2O2, generated by the action of NADPH oxidase (Tossi et al., 2009), a key second messenger in the ABA signaling network, as well as by possibly inhibiting the activity of MAPKs, which act downstream of H2O2 and are involved in the ABA-induced regulation of stomata movements (Jammes et al., 2009). This is consistent with flavonols being distributed in the cytoplasm, and mostly in the nucleus (Watkins et al., 2014), but not in the vacuole in stomata guard cells, at least in Arabidopsis.

References

    1. Adamowski M., Friml J. (2015). PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27 20–32. 10.1105/tpc.114.134874 - DOI - PMC - PubMed
    1. Agati G., Azzarello E., Pollastri S., Tattini M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 196 67–76. 10.1016/j.plantsci.2012.07.014 - DOI - PubMed
    1. Agati G., Biricolti S., Guidi L., Ferrini F., Fini A., Tattini M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J. Plant Physiol. 168 204–212. 10.1016/j.jplph.2010.07.016 - DOI - PubMed
    1. Agati G., Brunetti C., Di Ferdinando M., Ferrini F., Pollastri S., Tattini M. (2013). Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol. Biochem. 72 35–45. 10.1016/j.plaphy.2013.03.014 - DOI - PubMed
    1. Agati G., Matteini P., Goti A., Tattini M. (2007). Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174 77–89. 10.1111/j.1469-8137.2007.01986x - DOI - PubMed