Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 4;9(26):5787-5794.
doi: 10.1039/c8sc01703d. eCollection 2018 Jul 14.

Weak interactions but potent effect: tunable mechanoluminescence by adjusting intermolecular C-H···π interactions

Affiliations

Weak interactions but potent effect: tunable mechanoluminescence by adjusting intermolecular C-H···π interactions

Zongliang Xie et al. Chem Sci. .

Abstract

A new mechanoluminescent material (4-(diphenylamino)phenyl)(4-(diphenylphosphanyl)phenyl)methanone (CDpP), which displays tunable mechanoluminescent emission colors, has been designed and successfully synthesized. CDpP shows two distinct mechanoluminescent colors (blue and green) in different crystalline states. Single-crystal analyses and femtosecond transient emission studies reveal that the striking tunable mechanoluminescence properties of CDpP mainly originate from the different C-H···π interactions in the crystal structures. CDpP crystals with more C-H···π interactions show blue mechanoluminescence (ML), and the emission is attributed to the locally excited (LE)-state because the twisting process for the excited state is restricted by C-H···π interactions. Conversely, CDpP crystals with fewer C-H···π interactions display green ML, in which the red-shifted emission band originates from the twisted intramolecular charge transfer (TICT) excited state because the diphenylamine moiety is relatively free to rotate. The manipulation of weak intermolecular interactions in the crystalline state is a useful and reliable strategy for the tuning of the ML emission wavelengths.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (a) Chemical structure of CDpP, (b) emission spectra of CDpP in various solvents with a concentration of 1 × 10–5 mol L–1, (c) emission spectra of CDpP in different crystalline states, (d) temperature-dependent emission decay spectra of CDpP-B at 473 nm (left) and CDpP-G at 504 nm (right), (e) time-resolved emission spectra of CDpP-B in nanosecond (below) and microsecond (above) ranges, and (f) time-resolved emission spectra of CDpP-G in nanosecond (below) and microsecond (above) ranges.
Fig. 2
Fig. 2. (a) PL spectra/ML spectra of CDpP-B (above) and CDpP-G (below), (b) photographs showing: (i) solid-state PL (top right) with letters “B” and “G” during irradiation with UV-light (365 nm), and (ii) generation of ML (the light spot) for CDpP-B (above) and CDpP-G (below) after pressing the powder with a spatula against the side-wall of a glass vial.
Fig. 3
Fig. 3. Single crystal structures of CDpP-B and CDpP-G with C–H···π intermolecular interactions involving the diphenyl moieties and luminescence pictures of the CDpP-B and CDpP-G single crystals in the dark under 365 nm UV-light irradiation.
Fig. 4
Fig. 4. (a) Femtosecond transient emission spectra of CDpP in various solvents at a concentration of 1 × 10–5 mol L–1, (b) femtosecond transient emission spectra of CDpP-B crystals, (c) femtosecond transient emission spectra of CDpP-G crystals, (d) normalized time-resolved emission spectra of CDpP-B (below) and CDpP-G (above) upon excitation at 400 nm and gating at the indicated delay times, (e) spectral distributions of the pre-exponential coefficients obtained from a global analysis of the femtosecond transient emission spectrum of CDpP-B, and (f) spectral distributions of the pre-exponential coefficients obtained from a global analysis of the femtosecond transient emission spectrum of CDpP-G.
Fig. 5
Fig. 5. Photodynamic schemes of the emission processes of CDpP-B and CDpP-G (above) and the illustration of the different photodynamic processes for these two types of crystals (below).

References

    1. Tang C. W., VanSlyke S. A. Appl. Phys. Lett. 1987;51:913.
    2. Baldo M. A., O'Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., Forrest S. R. Nature. 1998;395:151.
    3. Tung Y. L., Lee S. W., Chi Y., Chen L. S., Shu C. F., Wu F. I., Carty A. J., Chou P. T., Peng S. M., Lee G. H. Adv. Mater. 2005;17:1059.
    4. Tu G. L., Mei C. Y., Zhou Q. G., Cheng Y. X., Geng Y. H., Wang L. X., Ma D. G., Jing X. B., Wang F. S. Adv. Funct. Mater. 2006;16:101.
    5. Yu X.-M., Kwok H.-S., Wong W.-Y., Zhou G.-J. Chem. Mater. 2006;18:5097.
    6. Yan B. P., Cheung C. C. C., Kui S. C. F., Xiang H. F., Roy V. A. L., Xu S. J., Che C. M. Adv. Mater. 2007;19:3599.
    7. Samuel I. D. W., Turnbull G. A. Chem. Rev. 2007;107:1272. - PubMed
    8. Endo A., Ogasawara M., Takahashi A., Yokoyama D., Kato Y., Adachi C. Adv. Mater. 2009;47:4802. - PubMed
    9. Czerwieniec R., Yu J., Yersin H. Inorg. Chem. 2010;50:8293. - PubMed
    10. Chi Z., Zhang X., Xu B., Zhou X., Ma C., Zhang Y., Liu S., Xu J. Chem. Soc. Rev. 2012;41:3878. - PubMed
    11. Dias F. B., Bourdakos K. N., Jankus V., Moss K. C., Kamtekar K. T., Bhalla V., Santos J., Bryce M. R., Monkman A. P. Adv. Mater. 2013;25:3707. - PubMed
    12. Yam V. W.-W., Au V. K.-M., Leung S. Y.-L. Chem. Rev. 2015;115:7589. - PubMed
    13. Mei J., Leung N. L. C., Kwok R. T. K., Lam J. W. Y., Tang B. Z. Chem. Rev. 2015;115:11718. - PubMed
    14. Chen X., Wang F., Hyun J. Y., Wei T., Qiang J., Ren X., Shin I., Yoon J. Chem. Soc. Rev. 2016;45:2976. - PubMed
    15. Yu T., Ou D., Yang Z., Huang Q., Mao Z., Chen J., Zhang Y., Liu S., Xu J., Bryce M. R., Chi Z. Chem. Sci. 2017;8:1163. - PMC - PubMed
    1. Xie Y., Li Z. Chem. 2018;4:943.
    1. Hird J. R., Chakravarty A., Walton A. J. J. Phys. D: Appl. Phys. 2007;40:1464.
    1. Chapman G. N., Walton A. J. J. Appl. Phys. 1983;54:5961.
    1. Goodgame D. M. L., Cotton F. A. J. Chem. Soc. 1961:3735.
    2. Tseng C., Fox M. A., Liao J., Ku C., Sie Z., Chang C., Wang J., Chen Z., Lee G., Chi Y. J. Mater. Chem. C. 2017;5:1420.
    3. Hsu C. W., Ly K. T., Lee W. K., Wu C. C., Wu L. C., Lee J. J., Lin T. C., Liu S. H., Chou P. T., Lee G. H., Chi Y. ACS Appl. Mater. Interfaces. 2016;8:33888. - PubMed
    4. Lee Y. A., Eisenberg R. J. Am. Chem. Soc. 2003;125:7778. - PubMed
    5. Knotter D. M., Maanen H. L. V., Grove D. M., Spek A. L. Inorg. Chem. 1991;30:3309.