Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;30(38):e1802554.
doi: 10.1002/adma.201802554. Epub 2018 Aug 5.

Logic Computing with Stateful Neural Networks of Resistive Switches

Affiliations

Logic Computing with Stateful Neural Networks of Resistive Switches

Zhong Sun et al. Adv Mater. 2018 Sep.

Abstract

Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network.

Keywords: in-memory computing; neural networks; neuromorphic; resistive switching memory; stateful logic.

PubMed Disclaimer

LinkOut - more resources