Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 20;54(76):10683-10686.
doi: 10.1039/c8cc04736g.

Carbide clusterfullerene DyYTiC@C80 featuring three different metals in the endohedral cluster and its single-ion magnetism

Affiliations

Carbide clusterfullerene DyYTiC@C80 featuring three different metals in the endohedral cluster and its single-ion magnetism

Ariane Brandenburg et al. Chem Commun (Camb). .

Abstract

Carbide clusterfullerene DyYTiC@C80-Ih with three different metal atoms in the endohedral cluster is obtained by arc-discharge synthesis with methane as reactive gas and is successfully isolated by HPLC. The compound shows single-molecule magnetism (SMM) with magnetic hysteresis below 8 K. The SMM properties of DyYTiC@C80 are compared to those of DySc2N@C80 and the influence of the central atom in the endohedral cluster is analyzed.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1
Representative HPLC chromatogram of the fullerene extract, obtained by the arc-discharge synthesis in the Dy–Y–Ti metal system and methane as a reactive gas (two analytical BuckyPrep columns, toluene as an eluent with a flow rate of 1.6 mL min−1 at 40 °C). The insets show an enhancement in the chromatogram in the range of the main EMF fractions F1 and F2 (shaded magenta and dark cyan, respectively) as well as their LDI mass-spectra (positive-ion mode).
Fig. 2
Fig. 2
(a) Separation of the fraction F1 (M2TiC@C80-Ih) by recycling HPLC (semi-preparative BuckyPrep column, toluene as an eluent); the insets show the enhancement of the 11th cycle marking the composition of each component and mass-spectra of purified M2@TiC@C80-Ih fullerenes (M2 = Y2, DyY, and Dy2). (b) UV-vis-NIR absorption spectra of M2@TiC@C80-Ih fullerenes (M2 = Y2, DyY, and Dy2) in toluene (the inset shows the enhancement of the 600–1300 nm range). (c) Molecular structure of DyYTiC@C80-Ih (Dy is green, Y is violet, Ti is cyan, and carbons are grey).
Fig. 3
Fig. 3
(a) Magnetization curves measured for DyYTiC@C80 at different temperatures; the inset shows the determination of the blocking temperature from the magnetic susceptibility (χ) measurements for zero-field cooled (ZFC) and in-field cooled (FC) samples (temperature sweep rate of 5 K min−1 in a field of 0.2 T). (b) Magnetic hysteresis at 1.8 K for non-diluted DyYTiC@C80, DyYTiC@C80 diluted in polystyrene (PS), and for the non-diluted DySc2N@C80; the inset shows enhancement of the region near zero field. Magnetic field sweep rate in all measurements is 2.9 mT s−1.
Fig. 4
Fig. 4
Relaxation times of magnetization of DyYTiC@C80 and DySc2N@C80 measured in the field of 0.2 T (dots) and their fits with eqn (1) (straight lines).

References

    1. Popov AA, Yang S, Dunsch L. Chem Rev. 2013;113:5989. - PubMed
    2. Chaur MN, Melin F, Ortiz AL, Echegoyen L. Angew Chem Int Ed. 2009;48:7514. - PubMed
    3. Lu X, Feng L, Akasaka T, Nagase S. Chem Soc Rev. 2012;41:7723. - PubMed
    1. Svitova AL, Popov AA, Dunsch L. Inorg Chem. 2013;52:3368. - PubMed
    2. Yang SF, Popov AA, Kalbac M, Dunsch L. Chem – Eur J. 2008;14:2084. - PubMed
    3. Yang SF, Kalbac M, Popov A, Dunsch L. ChemPhysChem. 2006;7:1990. - PubMed
    4. Zhang Y, Popov AA, Dunsch L. Nanoscale. 2014;6:1038. - PubMed
    5. Zhang Y, Schiemenz S, Popov AA, Dunsch L. J Phys Chem Lett. 2013;4:2404.
    6. Junghans K, Ghiassi KB, Samoylova NA, Deng Q, Rosenkranz M, Olmstead MM, Balch AL, Popov AA. Chem– Eur J. 2016;22:13098. - PMC - PubMed
    7. Wang XL, Zuo TM, Olmstead MM, Duchamp JC, Glass TE, Cromer F, Balch AL, Dorn HC. J Am Chem Soc. 2006;128:8884. - PubMed
    8. Stevenson S, Thompson HR, Arvola KD, Ghiassi KB, Olmstead MM, Balch AL. Chem– Eur J. 2015;21:10362. - PubMed
    9. Stevenson S, Chancellor C, Lee HM, Olmstead MM, Balch AL. Inorg Chem. 2008;47:1420. - PubMed
    10. Zhang Y, Ghiassi KB, Deng Q, Samoylova NA, Olmstead MM, Balch AL, Popov AA. Angew Chem Int Ed. 2015;52:495. - PubMed
    11. Chen N, Zhang EY, Tan K, Wang CR, Lu X. Org Lett. 2007;9:2011. - PubMed
    12. Wei T, Wang S, Lu X, Tan Y, Huang J, Liu F, Li Q, Xie S, Yang S. J Am Chem Soc. 2016;138:207. - PubMed
    13. Wang S, Huang J, Gao C, Jin F, Li Q, Xie S, Yang S. Chem– Eur J. 2016;22:8309. - PubMed
    14. Chen N, Fan LZ, Tan K, Wu YQ, Shu CY, Lu X, Wang CR. J Phys Chem C. 2007;111:11823.
    1. Iezzi EB, Duchamp JC, Fletcher KR, Glass TE, Dorn HC. Nano Lett. 2002;2:1187.
    2. Zhang Z, Liu Y, Han P, Zhuang S, Wang T, Luo S, Xu B. ChemPhysChem. 2015;16:295. - PubMed
    1. Westerström R, Dreiser J, Piamonteze C, Muntwiler M, Weyeneth S, Krämer K, Liu S-X, Decurtins S, Popov A, Yang S, Dunsch L, et al. Phys Rev B: Condens Matter Mater Phys. 2014;89:060406.
    2. Svitova AL, Krupskaya Y, Samoylova N, Kraus R, Geck J, Dunsch L, Popov AA. Dalton Trans. 2014;43:7387. - PubMed
    3. Zhang Y, Krylov D, Schiemenz S, Rosenkranz M, Westerstrom R, Dreiser J, Greber T, Buchner B, Popov AA. Nanoscale. 2014;6:11431. - PubMed
    1. Yang S, Chen C, Popov A, Zhang W, Liu F, Dunsch L. Chem Commun. 2009:6391. - PubMed

LinkOut - more resources