Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 8;13(1):41.
doi: 10.1186/s13024-018-0270-8.

Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases

Affiliations

Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases

Jason A Chen et al. Mol Neurodegener. .

Abstract

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease for which the genetic contribution is incompletely understood.

Methods: We conducted a joint analysis of 5,523,934 imputed SNPs in two newly-genotyped progressive supranuclear palsy cohorts, primarily derived from two clinical trials (Allon davunetide and NNIPPS riluzole trials in PSP) and a previously published genome-wide association study (GWAS), in total comprising 1646 cases and 10,662 controls of European ancestry.

Results: We identified 5 associated loci at a genome-wide significance threshold P < 5 × 10- 8, including replication of 3 loci from previous studies and 2 novel loci at 6p21.1 and 12p12.1 (near RUNX2 and SLCO1A2, respectively). At the 17q21.31 locus, stepwise regression analysis confirmed the presence of multiple independent loci (localized near MAPT and KANSL1). An additional 4 loci were highly suggestive of association (P < 1 × 10- 6). We analyzed the genetic correlation with multiple neurodegenerative diseases, and found that PSP had shared polygenic heritability with Parkinson's disease and amyotrophic lateral sclerosis.

Conclusions: In total, we identified 6 additional significant or suggestive SNP associations with PSP, and discovered genetic overlap with other neurodegenerative diseases. These findings clarify the pathogenesis and genetic architecture of PSP.

Keywords: Genome-wide association study; Neurodegeneration; Progressive supranuclear palsy.

PubMed Disclaimer

Conflict of interest statement

Written informed consent was obtained for all patients participating in the Allon Therapeutics davunetide trial and the NNIPPS trial, and IRB approval was obtained from the corresponding Institutional Review Boards. For the NNIPPS study, The protocol and amendments were reviewed and approved by the Comité de Protection des Personnes of Pitié-Salpêtrière Hospital (France), the UK Multicentre Research Ethics Committee (MREC) (UK), Ethikkommission of the University of Ulm (Germany) and by local Institutional Review Boards (Ethics Committees) where appropriate (UK, Germany). For the BBBIPPS study, the protocol and amendments were reviewed and approved by the Comité de Protection des Personnes of Pitié-Salpêtrière Hospital (France). Additional data was obtained via NIAGADS and dbGAP in accordance with data access policies. The Institutional Review Board at the University of California, Los Angeles, approved the joint study design, including review of outside consent forms.

Not applicable.

J.A.C. is founder of Verge Genomics, a biotechnology company, and holds an equity stake. P.A. is a member of the Scientific Advisory Board of Genoscreen, a biotechnology company, and Director of the Fondation Plan Alzheimer, a non-profit organization. J-F.G. has received research grant funding from Roche.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Genome-wide SNP association in the joint analysis. a Manhattan plot indicating the SNP association P values. The vertical axis displays the strength of association (−log10 P value) as a function of genomic position, with alternating colors for sequential chromosomes. Genome-wide significant and suggestive loci are labeled with the nearest gene symbol. The thresholds for significant (P < 5 × 10− 8, red horizontal line) and suggestive (P < 1 × 10− 6, blue horizontal line) associations are shown. b-d Quantile-quantile plots for: b all SNPs, including the strongly associated extended haplotype on chromosome 17; c SNPs excluding chromosome 17; and d SNPs excluding genome-wide significant and suggestive loci. The 95% confidence interval for the expected distribution of p-values is shaded
Fig. 2
Fig. 2
Forest plots showing association across each individual cohort for selected SNPs. A total of six genome-wide significant loci were identified, with representative SNPs: a rs71920662 in 17q21.31, near MAPT; b rs57113693 in 1q25.3, near STX6; c rs10675541 in 3p22.1, near MOBP; d rs35740963 in 6p21.1, near RUNX2; and e rs7966334 in 12p12.1, near SLCO1A2. An additional four suggestive loci were also identified: f rs12125383 in 1q41, near DUSP10 in an intergenic region; g rs147124286 in 12q13.13, near SP1; h rs2045091 in 8q24.21, near ASAP1; and i rs114573015 in 1p22.3, near WDR63. j Additionally, a previously reported GWAS SNP rs7571971 in 2p11.2, near EIF2AK3, was not identified as genome-wide significant in the joint analysis
Fig. 3
Fig. 3
Heatmap of genetic correlation between GWAS summary statistics for neurodegenerative diseases (PSP – progressive supranuclear palsy, ALS – amyotrophic lateral sclerosis, AD – Alzheimer’s disease, bvFTD – behavioral variant frontotemporal dementia, PD – Parkinson’s disease), calculated by LDSC. GWAS for non-neurodegenerative phenotypes (SCZ – schizophrenia, BIP – bipolar disorder, height, and T2D– type 2 diabetes mellitus) are also included for comparison. In each cell, the genetic correlation coefficient (and P value in parentheses) is shown. Phenotypes that share a common polygenic background are positively correlated

References

    1. Respondek G, Roeber S, Kretzschmar H, Troakes C, Al-Sarraj S, Gelpi E, Gaig C, Chiu WZ, van Swieten JC, Oertel WH, et al. Accuracy of the national institute for neurological disorders and stroke/society for progressive supranuclear palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov Disord. 2013;28(4):504–509. doi: 10.1002/mds.25327. - DOI - PubMed
    1. Chen JA, Wang Q, Davis-Turak J, et al. A multiancestral genome-wide exome array study of alzheimer disease, frontotemporal dementia, and progressive supranuclear palsy. JAMA Neurol. 2015;72(4):414–422. doi: 10.1001/jamaneurol.2014.4040. - DOI - PMC - PubMed
    1. Williams DR, de Silva R, Paviour DC, Pittman A, Watt HC, Kilford L, Holton JL, Revesz T, Lees AJ. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. Brain. 2005;128(6):1247–1258. doi: 10.1093/brain/awh488. - DOI - PubMed
    1. Josephs KA, Petersen RC, Knopman DS, Boeve BF, Whitwell J, Duffy JR, Parisi JE, Dickson DW. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006;66(1):41–48. doi: 10.1212/01.wnl.0000191307.69661.c3. - DOI - PubMed
    1. Osaki Y, Ben-Shlomo Y, Lees AJ, Daniel SE, Colosimo C, Wenning G, Quinn N. Accuracy of clinical diagnosis of progressive supranuclear palsy. Mov Disord. 2004;19(2):181–189. doi: 10.1002/mds.10680. - DOI - PubMed

Publication types