Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 8;10(453):eaan0941.
doi: 10.1126/scitranslmed.aan0941.

Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP)

Affiliations

Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP)

Masturah Bte Mohd Abdul Rashid et al. Sci Transl Med. .

Abstract

Multiple myeloma is an incurable hematological malignancy that relies on drug combinations for first and secondary lines of treatment. The inclusion of proteasome inhibitors, such as bortezomib, into these combination regimens has improved median survival. Resistance to bortezomib, however, is a common occurrence that ultimately contributes to treatment failure, and there remains a need to identify improved drug combinations. We developed the quadratic phenotypic optimization platform (QPOP) to optimize treatment combinations selected from a candidate pool of 114 approved drugs. QPOP uses quadratic surfaces to model the biological effects of drug combinations to identify effective drug combinations without reference to molecular mechanisms or predetermined drug synergy data. Applying QPOP to bortezomib-resistant multiple myeloma cell lines determined the drug combinations that collectively optimized treatment efficacy. We found that these combinations acted by reversing the DNA methylation and tumor suppressor silencing that often occur after acquired bortezomib resistance in multiple myeloma. Successive application of QPOP on a xenograft mouse model further optimized the dosages of each drug within a given combination while minimizing overall toxicity in vivo, and application of QPOP to ex vivo multiple myeloma patient samples optimized drug combinations in patient-specific contexts.

PubMed Disclaimer

Comment in

Publication types

MeSH terms