Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;14(36):e1802033.
doi: 10.1002/smll.201802033. Epub 2018 Aug 9.

Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance

Affiliations

Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance

Ryusuke Uchida et al. Small. 2018 Sep.

Abstract

Efficiencies >20% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10%) but amply rule out the possibility of Rb-incorporation into the MAPbI3 (MA = CH3 NH3+ ) lattice. Moreover, morphological studies and time-resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI3 layers and charge-carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs-containing MAPbI3 systems compared to the pristine MAPbI3 . Investigation including mixed halide (I/Br) and mixed cation A-cation based compositions further confirms the absence of Rb+ from the 3D-perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions.

Keywords: X-ray diffraction; cation miscibility; cesium cation; perovskite solar cells; rubidium cation.

PubMed Disclaimer

LinkOut - more resources