Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul;91(3):274-279.
doi: 10.15386/cjmed-935. Epub 2018 Jul 31.

Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials

Affiliations
Review

Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials

Mihai Flaviu Şuhani et al. Clujul Med. 2018 Jul.

Abstract

Introduction: The key idea of nanotechnology is to construct and preserve functional structures by means of exploiting atoms and molecules. Nanotechnology has proven to be crucial in pharmacological medicine, tissue engineering, clinical diagnosis, long term conservation of biological tissues in a cryogenic state, protein detection, tumor destruction and magnetic resonance imaging.The aim of this paper is to review the literature on the specific characteristics of nanostructured materials, their applications and advantages that they bring to dentistry.

Method: We conducted an electronic scientific database research that included PubMed, Cochrane and Medline. The following keywords were used: nanotechnology, nanodentistry and silver nanoparticles. Initially 1650 original articles were retrieved from the these mentioned international databases, which were screened in detail. We included literature reviews that dealt with the comprehensive applications of nanostructured particles and silver nanoparticles in particular, in all fields of contemporary dentistry. Case reports, clinical trials, editorials and opinion letters were excluded in the first phase of our research. Fifty two articles met all the selection criteria and were ultimately selected and reviewed.

Results: Nanotechnology deals with the production of various types of nanomaterials with potential applications in the field of biomedicine. Silver nanoparticles have the capacity to eliminate dental caries producing bacteria or repair teeth enamel with signs of dental decay. Nanodentistry will allow better oral health by use of nanostructured materials. Treatment opportunities that nanotechnology has to offer in contemporary dentistry include local anesthesia, permanent treatment of dental hypersensitivity, orthodontic and oral health care with nanorobotic dentifrice.

Conclusion: The studies that we reviewed are largely in favor of nanotechnology and nanostructured materials, highlighting their qualities and enhancements they bring to the field of dentistry. Although many of these products that benefit from silver nanoparticles properties are still expensive and exclusive, we can foresee major improvements and demand regarding dental biomaterials with nanoparticles incorporated in the near future.

Keywords: nanodentistry; nanotechnology; silver nanoparticles.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Samiei M, Aghazadeh M, Lotfi M, Shakoei S, Aghazadeh Z, Vahid Pakdel SM. Antimicrobial efficacy of mineral trioxide aggregate with and without silver nanoparticles. Iran Endod J. 2013;8(4):166–170. - PMC - PubMed
    1. Lotfi M, Vosoughhosseini S, Ranjkesh B, Khani S, Saghiri M, Zand V. Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. African Journal of Biotechnology. 2011;10(35):6799–6803.
    1. Nam KY. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J Adv Prosthodont. 2011;3(1):20–24. - PMC - PubMed
    1. Flores CY, Diaz C, Rubert A, Benítez GA, Moreno MS, Fernández Lorenzo de Mele MA, et al. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. J Colloid Interface Sci. 2010;350(2):402–408. - PubMed
    1. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32(24):5706–5716. - PubMed

LinkOut - more resources