Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan;95(1):132-139.
doi: 10.1111/cge.13434. Epub 2018 Sep 10.

Genetic regulatory pathways of split-hand/foot malformation

Affiliations
Free article
Review

Genetic regulatory pathways of split-hand/foot malformation

Piranit N Kantaputra et al. Clin Genet. 2019 Jan.
Free article

Abstract

Split-hand/foot malformation (SHFM) is caused by mutations in TP63, DLX5, DLX6, FGF8, FGFR1, WNT10B, and BHLHA9. The clinical features of SHFM caused by mutations of these genes are not distinguishable. This implies that in normal situations these SHFM-associated genes share an underlying regulatory pathway that is involved in the development of the central parts of the hands and feet. The mutations in SHFM-related genes lead to dysregulation of Fgf8 in the central portion of the apical ectodermal ridge (AER) and subsequently lead to misexpression of a number of downstream target genes, failure of stratification of the AER, and thus SHFM. Syndactyly of the remaining digits is most likely the effects of dysregulation of Fgf-Bmp-Msx signaling on apoptotic cell death. Loss of digit identity in SHFM is hypothesized to be the effects of misexpression of HOX genes, abnormal SHH gradient, or the loss of balance between GLI3A and GLI3R. Disruption of canonical and non-canonical Wnt signaling is involved in the pathogenesis of SHFM. Whatever the causative genes of SHFM are, the mutations seem to lead to dysregulation of Fgf8 in AER cells of the central parts of the hands and feet and disruption of Wnt-Bmp-Fgf signaling pathways in AER.

Keywords: SHFM; ectrodactyly; lobster claw deformity; malformation of limb; oligodactyly.

PubMed Disclaimer

Publication types

MeSH terms

Supplementary concepts