Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;30(4):363-375.
doi: 10.1080/09540261.2018.1481827. Epub 2018 Aug 13.

Psychedelics as anti-inflammatory agents

Affiliations

Psychedelics as anti-inflammatory agents

Thomas W Flanagan et al. Int Rev Psychiatry. 2018 Aug.

Abstract

Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising new treatment options for a variety of disorders. The recent success of these agonists, also known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these compounds are perceived in the medical community and populace at large. One emerging therapeutic area that holds significant promise is their use as anti-inflammatory agents. Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of human inflammatory disorders at sub-behavioural levels. This review discusses the role of the 5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms, and may represent a new and exciting treatment strategy for several inflammatory disorders.

Keywords: (R)-DOI; 5-HT2A agonist; 5-HT2A receptor; DOI; Psychedelics; hallucinogens; inflammation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources