Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus Flammulina elastica
- PMID: 30104475
- PMCID: PMC6121412
- DOI: 10.3390/ijms19082379
Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus Flammulina elastica
Abstract
Next-generation sequencing (NGS) of the Flammulina elastica (wood-rotting basidiomycete) genome was performed to identify carbohydrate-active enzymes (CAZymes). The resulting assembly (31 kmer) revealed a total length of 35,045,521 bp (49.7% GC content). Using the AUGUSTUS tool, 12,536 total gene structures were predicted by ab initio gene prediction. An analysis of orthologs revealed that 6806 groups contained at least one F. elastica protein. Among the 12,536 predicted genes, F. elastica contained 24 species-specific genes, of which 17 genes were paralogous. CAZymes are divided into five classes: glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycosyltransferases (GTs), and auxiliary activities (AA). In the present study, annotation of the predicted amino acid sequences from F. elastica genes using the dbCAN CAZyme database revealed 508 CAZymes, including 82 AAs, 218 GHs, 89 GTs, 18 PLs, 59 CEs, and 42 carbohydrate binding modules in the F. elastica genome. Although the CAZyme repertoire of F. elastica was similar to those of other fungal species, the total number of GTs in F. elastica was larger than those of other basidiomycetes. This genome information elucidates newly identified wood-degrading machinery in F. elastica, offers opportunities to better understand this fungus, and presents possibilities for more detailed studies on lignocellulosic biomass degradation that may lead to future biotechnological and industrial applications.
Keywords: Flammulina elastica; carbohydrate active enzyme; whole genome sequencing.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures






Similar articles
-
Genomic Insights into the Fungal Lignocellulolytic Machinery of Flammulina rossica.Microorganisms. 2019 Oct 8;7(10):421. doi: 10.3390/microorganisms7100421. Microorganisms. 2019. PMID: 31597238 Free PMC article.
-
Genome-Wide Comparison of Carbohydrate-Active Enzymes (CAZymes) Repertoire of Flammulina ononidis.Mycobiology. 2018 Nov 16;46(4):349-360. doi: 10.1080/12298093.2018.1537585. eCollection 2018. Mycobiology. 2018. PMID: 30637143 Free PMC article.
-
Comparative Analysis of Carbohydrate Active Enzymes in the Flammulina velutipes var. lupinicola Genome.Microorganisms. 2020 Dec 23;9(1):20. doi: 10.3390/microorganisms9010020. Microorganisms. 2020. PMID: 33374587 Free PMC article.
-
Whole-Genome Sequencing and Comparative Genomics Analysis of the Wild Edible Mushroom (Gomphus purpuraceus) Provide Insights into Its Potential Food Application and Artificial Domestication.Genes (Basel). 2022 Sep 10;13(9):1628. doi: 10.3390/genes13091628. Genes (Basel). 2022. PMID: 36140797 Free PMC article. Review.
-
Uronic polysaccharide degrading enzymes.Curr Opin Struct Biol. 2014 Oct;28:87-95. doi: 10.1016/j.sbi.2014.07.012. Epub 2014 Aug 25. Curr Opin Struct Biol. 2014. PMID: 25156747 Review.
Cited by
-
In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates.Int J Mol Sci. 2024 Jan 4;25(1):666. doi: 10.3390/ijms25010666. Int J Mol Sci. 2024. PMID: 38203838 Free PMC article.
-
Improving the Proteome-Mining of Schizophyllum commune to Enhance Medicinal Mushroom Applications.J Fungi (Basel). 2025 Feb 5;11(2):120. doi: 10.3390/jof11020120. J Fungi (Basel). 2025. PMID: 39997414 Free PMC article.
-
Arabinan saccharification by biogas reactor metagenome-derived arabinosyl hydrolases.Biotechnol Biofuels Bioprod. 2022 Nov 12;15(1):121. doi: 10.1186/s13068-022-02216-9. Biotechnol Biofuels Bioprod. 2022. PMID: 36371193 Free PMC article.
-
Profiling the dynamic adaptations of CAZyme-Producing microorganisms in the gastrointestinal tract of South African goats.Heliyon. 2024 Sep 6;10(17):e37508. doi: 10.1016/j.heliyon.2024.e37508. eCollection 2024 Sep 15. Heliyon. 2024. PMID: 39290285 Free PMC article.
-
Genomic insights into the lifestyles, functional capacities and oleagenicity of members of the fungal family Trichosporonaceae.Sci Rep. 2020 Feb 17;10(1):2780. doi: 10.1038/s41598-020-59672-2. Sci Rep. 2020. PMID: 32066798 Free PMC article.
References
-
- Redhead S.A., Petersen R.H. New species, varieties and combinations in the genus Flammulina. Mycotaxon. 1999;71:285–294.
-
- Petersen R.H., Hughes K.W., Redhead S.A. The genus Flammulina, a Tennessee tutorial. [(accessed on 21 October 2009)]; Available online: https://www.bioinfo.org.uk/html/Flammulina.htm.
-
- Ripková S., Hughes K., Adamčík S., Kučera V., Adamčíková K. The delimitation of Flammulina fennae. Mycol. Prog. 2010;9:469–484. doi: 10.1007/s11557-009-0654-9. - DOI
-
- Pérez-Butrón J.L., Ferdnández-Vicente J. Una nueva especie de Flammulina P. Karsten, F. cephalariae (Agaricales) encontrada en España. Rev. Catalana Micol. 2007;29:81–91.
-
- Eriksson K., Blanchette R.A., Ander P. Microbial and Ezymatic Degradation of Wood and Wood Components. Springer; Berlin/Heidelberg, Germany: 1990. Morphological aspects of wood degradation by fungi and bacteria; pp. 1–87.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous