A universal curve of apatite crystallinity for the assessment of bone integrity and preservation
- PMID: 30104595
- PMCID: PMC6089980
- DOI: 10.1038/s41598-018-30642-z
A universal curve of apatite crystallinity for the assessment of bone integrity and preservation
Abstract
The reliable determination of bioapatite crystallinity is of great practical interest, as a proxy to the physico-chemical and microstructural properties, and ultimately, to the integrity of bone materials. Bioapatite crystallinity is used to diagnose pathologies in modern calcified tissues as well as to assess the preservation state of fossil bones. To date, infrared spectroscopy is one of the most applied techniques for bone characterisation and the derived infrared splitting factor (IRSF) has been widely used to practically assess bioapatite crystallinity. Here we thoroughly discuss and revise the use of the IRSF parameter and its meaning as a crystallinity indicator, based on extensive measurements of fresh and fossil bones, virtually covering the known range of crystallinity degree of bioapatite. A novel way to calculate and use the infrared peak width as a suitable measurement of true apatite crystallinity is proposed, and validated by combined measurement of the same samples through X-ray diffraction. The non-linear correlation between the infrared peak width and the derived ISRF is explained. As shown, the infrared peak width at 604 cm-1 can be effectively used to assess both the average crystallite size and structural carbonate content of bioapatite, thus establishing a universal calibration curve of practical use.
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
Potential of Bioapatite Hydroxyls for Research on Archeological Burned Bone.Anal Chem. 2018 Oct 2;90(19):11556-11563. doi: 10.1021/acs.analchem.8b02868. Epub 2018 Sep 17. Anal Chem. 2018. PMID: 30176725
-
Ancient and modern bone diagnosis: Towards a better understanding of chemical and structural feature alterations.Spectrochim Acta A Mol Biomol Spectrosc. 2025 Feb 5;326:125259. doi: 10.1016/j.saa.2024.125259. Epub 2024 Oct 10. Spectrochim Acta A Mol Biomol Spectrosc. 2025. PMID: 39423555
-
Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones.Talanta. 2018 Mar 1;179:167-176. doi: 10.1016/j.talanta.2017.10.059. Epub 2017 Oct 31. Talanta. 2018. PMID: 29310218
-
Screening archaeological bone for palaeogenetic and palaeoproteomic studies.PLoS One. 2020 Jun 25;15(6):e0235146. doi: 10.1371/journal.pone.0235146. eCollection 2020. PLoS One. 2020. PMID: 32584871 Free PMC article.
-
Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey.Spectrochim Acta A Mol Biomol Spectrosc. 2020 Aug 15;237:118311. doi: 10.1016/j.saa.2020.118311. Epub 2020 Apr 17. Spectrochim Acta A Mol Biomol Spectrosc. 2020. PMID: 32330809
Cited by
-
Recombinant IGF-1 Induces Sex-Specific Changes in Bone Composition and Remodeling in Adult Mice with Pappa2 Deficiency.Int J Mol Sci. 2021 Apr 14;22(8):4048. doi: 10.3390/ijms22084048. Int J Mol Sci. 2021. PMID: 33919940 Free PMC article.
-
The Molecular and Mechanical Characteristics of Biomimetic Composite Dental Materials Composed of Nanocrystalline Hydroxyapatite and Light-Cured Adhesive.Biomimetics (Basel). 2022 Mar 30;7(2):35. doi: 10.3390/biomimetics7020035. Biomimetics (Basel). 2022. PMID: 35466252 Free PMC article.
-
Hierarchy of Bioapatites.Int J Mol Sci. 2022 Aug 23;23(17):9537. doi: 10.3390/ijms23179537. Int J Mol Sci. 2022. PMID: 36076932 Free PMC article.
-
Raman Spectra and Ancient Life: Vibrational ID Profiles of Fossilized (Bone) Tissues.Int J Mol Sci. 2022 Sep 14;23(18):10689. doi: 10.3390/ijms231810689. Int J Mol Sci. 2022. PMID: 36142598 Free PMC article.
-
Infrared spectral library of tooth enamel from African ungulates for accurate electron spin resonance dating.Sci Data. 2024 Aug 15;11(1):890. doi: 10.1038/s41597-024-03725-y. Sci Data. 2024. PMID: 39147838 Free PMC article.
References
-
- Weiner S, Wagner HD. The Material Bone: Structure-Mechanical Function Relations. Annu. Rev. Mater. Sci. 1998;28:271–298. doi: 10.1146/annurev.matsci.28.1.271. - DOI
-
- Hughes JM, Rakovan J. The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl) Rev. Mineral. Geochemistry. 2002;48:1–12. doi: 10.2138/rmg.2002.48.1. - DOI
-
- LeGeros RZ. Apatites in biological systems. Prog. Cryst. Growth Charact. 1981;4:1–45. doi: 10.1016/0146-3535(81)90046-0. - DOI
-
- Elliott JC. Calcium Phosphate Biominerals. Rev. Mineral. Geochemistry. 2002;48:427–453. doi: 10.2138/rmg.2002.48.11. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials