Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;13(8):1346-1349.
doi: 10.4103/1673-5374.235223.

Amnion epithelial cells - a novel therapy for ischemic stroke?

Affiliations

Amnion epithelial cells - a novel therapy for ischemic stroke?

Megan A Evans et al. Neural Regen Res. 2018 Aug.

Abstract

Stroke is a leading cause of death and disability and new therapies are desperately needed. Given the complex nature of ischemic brain injury, it has been postulated that cell-based therapies may be useful. However, cell resources, invasive extraction procedures, immunological rejection, tumorigenesis and ethical challenges make it unlikely that many stem cell types could serve as a practical source for therapy. By contrast, these issues do not pertain to human amnion epithelial cells (hAECs), which are placenta-derived stem cells. We recently assessed the effects of systemically delivered hAECs on stroke outcome using four animal models of stroke. We demonstrated that when injected intravenously after ischemia onset, hAECs migrate preferentially to the spleen and injured brain to limit apoptosis and inflammation, and attenuate early brain infiltration of immune cells, progression of infarction and systemic immunosuppression and to ultimately ameliorate functional deficits. When administration of hAECs is delayed by 1-3 days post-stroke, long-term functional recovery can still be enhanced in young and aged mice of either sex. Moreover, our proof-of-principle findings suggest that hAECs are effective at limiting post-stroke infarct development in non-human primates. Overall, the results suggest that hAECs could be a viable clinical stroke therapy.

Keywords: brain repair; cerebral infarction; human amnion epithelial cells; immunosuppression; inflammation; ischemic stroke; mouse; non-human primate; stem cells.

PubMed Disclaimer

Conflict of interest statement

None declared

Figures

Figure 1
Figure 1
A schematic of the likely mechanisms by which human amnion epithelial cells (hAECs) improve outcome after stroke. When administered acutely after ischemia onset (1.5 hours post-stroke), hAECs preferentially migrate to the spleen and injured brain to limit apoptosis and inflammation, and attenuate early brain infiltration of immune cells, progression of infarction and systemic immunosuppression to ultimately ameliorate functional deficits. When administration of hAECs is delayed by 1–3 days post-stroke, long-term functional recovery can still be enhanced, likely by increasing numbers of microtubule-associated protein 2 (MAP-2) positive neurons as well as altering the structure of the glial scar and numbers of immune cells in lymphoid tissue. Diagram adapted from Evans et al., 2018.

References

    1. Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 2016;13:661–670. - PMC - PubMed
    1. Broughton BR, Lim R, Arumugam TV, Drummond GR, Wallace EM, Sobey CG. Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells. Front Cell Neurosci. 2013;6:66. - PMC - PubMed
    1. Evans MA, Lim R, Kim HA, Chu HX, Gardiner-Mann CV, Taylor KWE, Chan CT, Brait VH, Lee S, Dinh QN, Vinh A, Phan TG, Srikanth VK, Ma H, Arumugam TV, Fann DY, Poh L, Hunt CPJ, Pouton CW, Haynes JM, et al. Acute or delayed systemic administration of human amnion epithelial cells improves outcomes in experimental stroke. Stroke. 2018;49:700–709. - PubMed
    1. Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, Guo L. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock. 2008;29:603–611. - PubMed
    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, et al. (2016) Heart Disease and Stroke Statistics-2016 Update: a report from the American Heart Association. Circulation. 133:e38–360. - PubMed