Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 11;47(35):12253-12263.
doi: 10.1039/c8dt02555j.

One step fabrication of novel Ag-CdS@EP floating photocatalyst for efficient degradation of organic pollutants under visible light illumination

Affiliations

One step fabrication of novel Ag-CdS@EP floating photocatalyst for efficient degradation of organic pollutants under visible light illumination

Usman Ali Khan et al. Dalton Trans. .

Abstract

In this paper, we present the fabrication of an expanded-perlite (EP)-based floating photocatalyst comprising CdS and Ag nanoparticles. In the Ag-CdS/EP nanocomposite, Ag-CdS was introduced as the photocatalytically active components and EP was employed as a low cost and sustainable support to reduce the problem of easy aggregation and improve the floating behavior of the designed catalyst. The Ag-CdS/EP photocatalyst was characterized via transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis diffuse spectroscopy (UV-vis DRS), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) and photoelectrochemical measurements. The XRD and HR-TEM results confirmed the formation of cubic crystalline silver nanoparticles anchored on the surface of EP-immobilized hexagonal cubic CdS. The significantly enhanced photocatalytic activities of the Ag-CdS/EP nanocomposite with varying Ag contents were investigated for the degradation of rhodamine B (RhB) and phenol under visible light irradiation, and it was found that the photocatalytic reaction proceeds via first order kinetics. Furthermore, the desirable cycling ability (5 runs) of the Ag-CdS/EP photocatalyst indicates its promising stability and reusability. The designed novel photocatalyst also conforms to the development of green chemistry since no organic solvents were required.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources