Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 14;11(1):471.
doi: 10.1186/s13071-018-3041-z.

Bionomics and vectorial role of anophelines in wetlands along the volcanic chain of Cameroon

Affiliations

Bionomics and vectorial role of anophelines in wetlands along the volcanic chain of Cameroon

Nathalie Amvongo-Adjia et al. Parasit Vectors. .

Abstract

Background: The epidemiological profiles of vector-borne diseases, such as malaria, are strongly associated with landscape components. The reduction of malaria burden in endemic and epidemic regions mainly depends on knowledge of the malaria-transmitting mosquito species, populations and behavioural characteristics, as well as malaria exposure risks. This work aimed at carrying out a holistic study in order to characterise Anopheles species in relation to human malaria in seven wetlands along the lower section of the volcanic chain of Cameroon.

Results: Eight malaria vectors: Anopheles arabiensis, An. coluzzii, An. funestus (s.s.), An. gambiae, An. hancocki, An. melas, An. nili and An. ziemanni, were found biting humans. Anopheles gambiae was widespread; however, it played a secondary role in the Ndop plain where An. ziemmani was the primary vector species (79.2%). Anophelines were more exophagic (73.6%) than endophagic (26.4%), showing a marked nocturnal activity (22:00-4:00 h) for An. coluzzii and An. gambiae while An. funestus (s.s.) was mostly caught between 1:00 and 6:00 h and An. ziemanni having an early evening biting behaviour (18:00-00:00 h). Female Anopheles were mostly observed to have relative high parity rates (≥ 70%), with the exception of the Meanja site where species parity varies from 46 to 55%. Overall, the transmission level was low with entomological inoculation rates estimated to 0.7 infected bites per person per month (ib/p/mth) in Tiko and Ndop, 1.4 ib/p/mth in Mamfe and 2.24 ib/p/mth in Santchou.

Conclusions: The present study represents detailed Anopheles vector characterisation from an understudied area along the volcanic chain of Cameroon with endemic malaria transmission. The significant differences in bionomics and Anopheles species distribution within the studied wetlands, highlights the importance of providing baseline data and an opportunity to assess the outcome of ongoing malaria control interventions in the country.

Keywords: Anopheles vectors; Malaria; Volcanic chain of Cameroon; Volcanic massif; Wetlands.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The protocol used for this study received ethical approval from the Cameroon National Ethics Committee (CNEC) and administrative approval from the Ministry of Public Health of Cameroon. The various aspects of the work were conducted in collaboration with the local district administration. In each community, details were given about potential risks and benefits of the study to the community leaders, head of households and potential mosquito collectors. It was explained that participation was voluntary, and investigators provided a written informed consent form which was signed by the head of households and mosquito collectors. Households were sprayed at the end of the survey, and presumptive malaria treatment was given throughout the study to mosquito collectors as recommended by the National Malaria Control Programme.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
3D map of the study area
Fig. 2
Fig. 2
Main genera of mosquitoes identified morphologically from wetlands of the different massifs of the volcanic chain of Cameroon. A significant difference based on a Chi-square test (P < 0.0001) was noted in the mosquito distribution for all sites
Fig. 3
Fig. 3
Diversity of Anopheles species (identified morphologically and using molecular techniques) from wetlands of major volcanic massifs across the study area. A significant difference based on a Chi-square test (P < 0.0001) was noted in anopheline abundance in all sites
Fig. 4
Fig. 4
Indoor and outdoor exposure to major anophelines per wetland. Anophelines were mostly collected outdoors; note that there were no specimens collected indoors in Kumba and Mamfe. t-test statistical significance was determined using the Boferonni-Dunn method for each Anopheles species biting behaviour per wetland. #P = 0.0986, *P < 0.05, **P < 0.001. Abbreviation: ns, not significant
Fig. 5
Fig. 5
Biting cycles of most predominant anophelines collected indoors (upper panels) and outdoors (lower panels) per wetland. An. coluzzii and An. gambiae were the most abundant specimens sampled both indoors and outdoors; An. ziemanni bites early in the evening

Similar articles

Cited by

References

    1. Wanji S, Tanke T, Atanga S, Ajonina C, Nicholas T, Fontenille D. Anopheles species of the mount Cameroon region: biting habits, feeding behaviour and entomological inoculation rates. Trop Med Int Health. 2003;8:643–649. doi: 10.1046/j.1365-3156.2003.01070.x. - DOI - PubMed
    1. Bigoga J, Manga L, Titanji V, Coetzee M, Leke R. Malaria vectors and transmission dynamics in coastal south-western Cameroon. Malar J. 2007;6:5. doi: 10.1186/1475-2875-6-5. - DOI - PMC - PubMed
    1. Atangana J, Fondjo E, Fomena A, Tamesse J, Patchoké S, Ndjemaï H, et al. Seasonal variations of malaria transmission in Western Cameroon highlands: entomological, parasitological and clinical investigations. J Cell Anim Biol. 2009;3:33–38.
    1. Tchuinkam T, Simard F, Lélé-Defo E, Téné-Fossog B, Tateng-Ngouateu A, Antonio-Nkondjio C, et al. Bionomics of anopheline species and malaria transmission dynamics along an altitudinal transect in western Cameroon. BMC Infect Dis. 2010;10:119. doi: 10.1186/1471-2334-10-119. - DOI - PMC - PubMed
    1. Tabue R, Nem T, Atangana J, Bigoga J, Patchoké S, Tchouine F, et al. Anopheles ziemanni a locally important malaria vector in Ndop health district, north west region of Cameroon. Parasit Vectors. 2014;7:262. doi: 10.1186/1756-3305-7-262. - DOI - PMC - PubMed