A Methodological Assessment and Characterization of Genetically-Driven Variation in Three Human Phosphoproteomes
- PMID: 30108239
- PMCID: PMC6092387
- DOI: 10.1038/s41598-018-30587-3
A Methodological Assessment and Characterization of Genetically-Driven Variation in Three Human Phosphoproteomes
Abstract
Phosphorylation of proteins on serine, threonine, and tyrosine residues is a ubiquitous post-translational modification that plays a key part of essentially every cell signaling process. It is reasonable to assume that inter-individual variation in protein phosphorylation may underlie phenotypic differences, as has been observed for practically any other molecular regulatory phenotype. However, we do not know much about the extent of inter-individual variation in phosphorylation because it is quite challenging to perform a quantitative high throughput study to assess inter-individual variation in any post-translational modification. To test our ability to address this challenge with SILAC-based mass spectrometry, we quantified phosphorylation levels for three genotyped human cell lines within a nested experimental framework, and found that genetic background is the primary determinant of phosphoproteome variation. We uncovered multiple functional, biophysical, and genetic associations with germline driven phosphopeptide variation. Variants affecting protein levels or structure were among these associations, with the latter presenting, on average, a stronger effect. Interestingly, we found evidence that is consistent with a phosphopeptide variability buffering effect endowed from properties enriched within longer proteins. Because the small sample size in this 'pilot' study may limit the applicability of our genetic observations, we also undertook a thorough technical assessment of our experimental workflow to aid further efforts. Taken together, these results provide the foundation for future work to characterize inter-individual variation in post-translational modification levels and reveal novel insights into the nature of inter-individual variation in phosphorylation.
Conflict of interest statement
The authors declare no competing interests.
Figures


Similar articles
-
Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.Plant J. 2019 Apr;98(2):370-384. doi: 10.1111/tpj.14215. Epub 2019 Feb 11. Plant J. 2019. PMID: 30589143
-
Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.Methods Mol Biol. 2017;1603:195-208. doi: 10.1007/978-1-4939-6972-2_13. Methods Mol Biol. 2017. PMID: 28493132
-
[Affinity chromatography based phosphoproteome research on lung cancer cells and its application].Se Pu. 2021 Jan;39(1):77-86. doi: 10.3724/SP.J.1123.2020.07041. Se Pu. 2021. PMID: 34227361 Free PMC article. Chinese.
-
Site-specific analysis of bacterial phosphoproteomes.Proteomics. 2011 Aug;11(15):3002-11. doi: 10.1002/pmic.201100012. Epub 2011 Jul 4. Proteomics. 2011. PMID: 21726046 Review.
-
Advances in the analysis of protein phosphorylation.J Proteome Res. 2008 May;7(5):1809-18. doi: 10.1021/pr7006544. Epub 2008 Mar 8. J Proteome Res. 2008. PMID: 18327898 Review.
References
-
- Lim, W., Mayer, B. & Pawson, T. Cell Signaling: Principles and mechanisms. 1 edn, (Garland Science, 2014).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials