Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 22;13(20):2189-2201.
doi: 10.1002/cmdc.201800533. Epub 2018 Sep 21.

In Silico Prediction of Blood-Brain Barrier Permeability of Compounds by Machine Learning and Resampling Methods

Affiliations

In Silico Prediction of Blood-Brain Barrier Permeability of Compounds by Machine Learning and Resampling Methods

Zhuang Wang et al. ChemMedChem. .

Abstract

The blood-brain barrier (BBB) as a part of absorption protects the central nervous system by separating the brain tissue from the bloodstream. In recent years, BBB permeability has become a critical issue in chemical ADMET prediction, but almost all models were built using imbalanced data sets, which caused a high false-positive rate. Therefore, we tried to solve the problem of biased data sets and built a reliable classification model with 2358 compounds. Machine learning and resampling methods were used simultaneously for the refinement of models with both 2 D molecular descriptors and molecular fingerprints to represent the chemicals. Through a series of evaluation, we realized that resampling methods such as Synthetic Minority Oversampling Technique (SMOTE) and SMOTE+edited nearest neighbor could effectively solve the problem of imbalanced data sets and that MACCS fingerprint combined with support vector machine performed the best. After the final construction of a consensus model, the overall accuracy rate was increased to 0.966 for the final external data set. Also, the accuracy rate of the model for the test set was 0.919, with an excellent balanced capacity of 0.925 (sensitivity) to predict BBB-positive compounds and of 0.899 (specificity) to predict BBB-negative compounds. Compared with other BBB classification models, our models reduced the rate of false positives and were more robust in prediction of BBB-positive as well as BBB-negative compounds, which would be quite helpful in early drug discovery.

Keywords: QSAR models; blood-brain barrier; imbalanced data; machine learning; resampling methods.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources