Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Apr 8;25(7):1675-81.
doi: 10.1021/bi00355a035.

Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins

Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins

A K Churg et al. Biochemistry. .

Abstract

X-ray structural information provides the opportunity to explore quantitatively the relation between the microenvironments of heme proteins and their redox potentials. This can be done by considering the protein as a "solvent" for its redox center and calculating the difference between the electrostatic energy of the reduced and oxidized heme. Such calculations are presented here, applying the protein dipoles-Langevin dipoles (PDLD) model to cytochrome c. The calculations focus on an evaluation of the difference between the redox potentials of cytochrome c and the octapeptide-methionine complex formed by hydrolysis of cytochrome c. The corresponding difference (approximately 7 kcal/mol) is accounted for by the PDLD calculations. It is found that the protein provides basically a low dielectric environment for the heme, which destabilizes the oxidized heme (relative to its energy in water). The effect of the charged propionic acids on the heme is examined in a preliminary way. It is found that the negative charges of these groups are in a hydrophilic rather than a hydrophobic environment and that the protein-water system provides an effective high dielectric constant for their interaction with the heme. The dual nature of the dielectric effect of the cytochrome (a low dielectric constant for the self-energy of the heme and a high dielectric constant for charge-charge interactions) is discussed. The findings of this work are consistent with the difference between the folding energies of the reduced and oxidized cytochrome c.

PubMed Disclaimer

Publication types