Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 23;26(15):19294-19317.
doi: 10.1364/OE.26.019294.

Pulse propagation in the slow and stopped light regime

Free article

Pulse propagation in the slow and stopped light regime

Tal A Weiss et al. Opt Express. .
Free article

Abstract

Electromagnetic pulse propagation in the slow light regime and near a zero group velocity point is relevant to a plethora of potential applications, and has analogies in numerous other wave systems. Unfortunately, the standard frequency-based formulation for pulse propagation is unsuitable for describing the dynamics in such regimes, due to the divergence of the dispersion coefficients. Moreover, in the presence of absorption, it is not clear how to interpret the propagation dynamics due to the drastic change induced by absorption upon the dispersion curves. As a remedy, we present an alternative momentum-based formulation, which is rapidly converging in these regimes, and naturally suitable for lossy and nonlinear media. It is specialized to a waveguide geometry which provides a significant simplification with respect to existing momentum-based schemes. Doing so, we provide a somewhat alternative, yet intuitive picture of the seeming enhanced absorption and nonlinear response in these regimes, and show that light-matter interactions are not enhanced in the slow/stopped light regimes.

PubMed Disclaimer

LinkOut - more resources