Endonuclease banding of isolated mammalian metaphase chromosomes
- PMID: 3011470
- DOI: 10.1016/0014-4827(86)90036-4
Endonuclease banding of isolated mammalian metaphase chromosomes
Abstract
Evidence is presented that endonuclease digestion of isolated, unfixed chromosomes results in the production of banding patterns similar to those produced by digestion of fixed, air-dried chromosomes. Mouse L cell chromosomes were isolated under acidic or relatively neutral pH conditions, exposed in situ (as wet mounts on glass slides) or in vitro (in suspension) to micrococcal nuclease, Alu I or Eco RI, treated with a buffered salt solution, and stained with Giemsa. After any of these endonuclease treatments in situ, the centromeric regions of the chromosomes were intensely stained, characteristic of the C-banding observed in fixed chromosomes exposed to the same treatments. Although the fixed chromosomes were morphologically well-preserved after endonuclease digestion, the morphology of chromosomes digested in situ was variable, ranging from normal to swollen to highly distorted chromosomes. In the latter, the endonucleases induced dispersion of non-C-band chromatin; however, C-bands were still apparent as condensed, differentially-stained regions. Exposure of isolated chromosomes to Alu I in vitro also resulted in well-defined C-banding and led to the extraction of about 70% of the chromosomal DNA. From these results, the mechanism of endonuclease-induced C-banding appears to involve the dispersion and extraction of digested chromatin.