Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels
- PMID: 3011572
- DOI: 10.2337/diab.35.6.654
Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels
Abstract
Isolated brain capillaries were used as a model system to test for binding and internalization of insulin and insulin-like growth factors (IGF) I and II. At 37 degrees C, the maximum specific binding of the 125I-labeled peptides was 48.0 +/- 0.8%/mg capillary protein for IGF I, 40.6 +/- 1.4% for IGF II, and 15.1 +/- 0.6% for insulin. The concentration of unlabeled peptide needed to cause a 50% decrease in the maximum binding (ID50) was 22 ng/ml (2.9 nM), 25 ng/ml (3.3 nM), and 7 ng/ml (1.2 nM) for IGF I, IGF II, and insulin, respectively. Unlabeled insulin competed poorly for the IGF I receptor, requiring 5000 ng/ml (667 nM) to cause a 50% reduction in binding, and did not compete at all for the IGF II receptor at concentrations up to 10(5) ng/ml (17.8 microM). The IGF I receptor was further characterized by reduced polyacrylamide gel electrophoresis of the disuccinimidyl suberate cross-linked 125I-labeled IGF I receptor. The gel showed a distinct band at 133,000 Mr that was abolished by 0.6 microgram/ml (80 nM) unlabeled IGF I but not by 10.0 micrograms/ml (1780 nM) unlabeled insulin. Peptide internalization was monitored by the acidwash technique. Only 22% of the bound IGF I was internalized, but 50% of the insulin and 43% of the IGF II were acid resistant. Capillaries prelabeled with internalized 125I-insulin could then export radioactivity into fresh, insulin-free media in a time- and temperature-dependent manner. However, high-performance liquid chromatography (HPLC) and trichloroacetic acid (TCA) analysis of the released material showed that it consisted mostly of degraded peptide.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical