Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 3:9:1137.
doi: 10.3389/fpls.2018.01137. eCollection 2018.

Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat

Affiliations

Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat

Weiling Wang et al. Front Plant Sci. .

Abstract

Salicylic acid (SA) can induce plant resistance to biotic and abiotic stresses through cross talk with other signaling molecules, whereas the interaction between hydrogen peroxide (H2O2) and abscisic acid (ABA) in response to SA signal is far from clear. Here, we focused on the roles and interactions of H2O2 and ABA in SA-induced freezing tolerance in wheat plants. Exogenous SA pretreatment significantly induced freezing tolerance of wheat via maintaining relatively higher dark-adapted maximum photosystem II quantum yield, electron transport rates, less cell membrane damage. Exogenous SA induced the accumulation of endogenous H2O2 and ABA. Endogenous H2O2 accumulation in the apoplast was triggered by both cell wall peroxidase and membrane-linked NADPH oxidase. The pharmacological study indicated that pretreatment with dimethylthiourea (H2O2 scavenger) completely abolished SA-induced freezing tolerance and ABA synthesis, while pretreatment with fluridone (ABA biosynthesis inhibitor) reduced H2O2 accumulation by inhibiting NADPH oxidase encoding genes expression and partially counteracted SA-induced freezing tolerance. These findings demonstrate that endogenous H2O2 and ABA signaling may form a positive feedback loop to mediate SA-induced freezing tolerance in wheat.

Keywords: endogenous signal; freezing tolerance; inhibitor; salicylic acid; wheat.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
SA pretreatment improves freezing tolerance of wheat plants. (A) Image of the maximum PS II quantum yield (Fv/Fm). (B) The average value of Fv/Fm and electron transport rates (ETR). (C) Electrolyte leakage (EL) and MDA content. (D) The phenotype of wheat plants in response to water and SA (100 μM) under freezing stress. Plants treated with 0, 10, 100, and 1000 μM SA were challenged with freezing stress at –2°C for 1 day, and were denoted as F, SA10 + F, SA100 + F, SA1000 + F, respectively. CT indicates the control (no SA and no freezing stress). The color code depicted on the top of the image (A) ranges from 0 (blue) to 1.0 (red). Data are the means ± SD of three replicates. Significant differences at P < 0.05 level are denoted by different lowercase letters according to Duncan’s multiple range test.
FIGURE 2
FIGURE 2
SA regulates H2O2 production in leaves of wheat plants. (A) Cytochemical localization of H2O2 in wheat leaves with CeCl3 staining and transmission electron microscopy. Arrows, CeCl3 precipitates; IS, intercellular space; CW, cell wall; Bars, 2 μm. The last fully expanded leaves were harvested at 3 h after water or 100 μM SA treatment. (B) Effects of DPI (diphenyleneiodonium, an inhibitor of NADPH oxidase) and SHAM (salicylhydroxamic acid, an inhibitor of cell wall Prx) on SA-induced H2O2 production. (C) Effects of DPI on SA increased the activity of cell wall Prx. (D) Effects of SHAM on SA up-regulated expression of RbohD and RbohF. (E) Staining H2O2 with H2DCF-DA and detected by confocal laser scanning microscope system (CLSM). Bars, 200 μm. Plants pretreated with 100 μM DPI or 5 mM SHAM were treated with water or 100 μM SA. The last fully expanded leaves were used for the analysis of H2O2 content and cell wall Prx activity at 3 h, Rboh expression at 12 h after water or 100 μM SA treatment. Data are the means ± SD of three replicates. Significant differences at P < 0.05 level are denoted by different lowercase letters according to Duncan’s multiple range test.
FIGURE 3
FIGURE 3
The relationship between SA-induced H2O2 and ABA. (A) Effects of DMTU (dimethylthiourea, a scavenger of H2O2 and OH•), DPI or SHAM on SA-induced ABA accumulation. (B) Effects of Flu (fluorine, an inhibitor of ABA synthesis) on SA-induced H2O2 accumulation. (C) Effects of Flu on SA up-regulated expression of RbohD and RbohF. Plants pretreated with water, 2 mM DMTU, 100 μM DPI, or 5 mM SHAM were treated with water or 100 μM SA treatment. The last fully expanded leaves were collected for the analysis of H2O2 content at 3 h, ABA content and Rboh expression at 12 h after water or 100 μM SA treatments. Data are the means ± SD of three replicates. Significant differences at P < 0.05 level are denoted by different lowercase letters according to Duncan’s multiple range test.
FIGURE 4
FIGURE 4
DMTU and Flu offset the SA-induced freezing tolerance. (A) Effects of DMTU on SA-induced H2O2 accumulation at 3 h after water or 100 μM SA treatment. (B) Effects of Flu on SA-induced ABA accumulation 12 h after water or 100 μM SA treatment. (C) Effects of DMTU or Flu on the images of Fv/Fm in SA treated plants under freezing stress. (D) Effects of DMTU or Flu on the average value of Fv/Fm in SA treated plants under freezing stress. Plants pretreated with water, 2 mM DMTU or 1 μM Flu were treated with water or 100 μM SA. After 12 h, the plants were challenged with freezing stress at –2°C for 1 day. Data are the means ± SD of three replicates. Significant differences at P < 0.05 level are denoted by different lowercase letters according to Duncan’s multiple range test.
FIGURE 5
FIGURE 5
DMTU and Flu reduce the SA-induced increase of antioxidative capacity in wheat under freezing stress. Plants pretreated with water, 2 mM DMTU or 1 μM Flu were treated with water or 100 μM SA. After 12 h, the plants were challenged with freezing stress at –2°C for 1 day. Data are the means ± SD of three replicates. Significant differences at P < 0.05 level are denoted by different lowercase letters according to Duncan’s multiple range test.
FIGURE 6
FIGURE 6
DMTU and Flu down-regulate the SA-induced expression of cold-responsive genes in wheat under freezing stress. Plants pretreated with water, 2 mM DMTU or 1 μM Flu were treated with water or 100 μM SA. After 12 h, the plants were challenged with freezing stress at –2°C for 1 day. Data are the means ± SD of three replicates. Significant differences at P < 0.05 level are denoted by different lowercase letters according to Duncan’s multiple range test.
FIGURE 7
FIGURE 7
A conclusive model for the induction of freezing tolerance by exogenous SA in wheat plants. SA activates cell wall Prx to produce H2O2 in the apoplast, which functions as a signal molecule to induce the increase of antioxidative capacity, to trigger the expression of cold-responsive genes and ABA synthesis. The increased ABA further activates NADPH oxidase, which could induce more production H2O2 in the apoplast. In addition, ABA signal also plays a role in SA-induced antioxidant capacity, and expression of cold-responsive genes in wheat plants under freezing stress.

References

    1. Adam A. L., Bestwick C. S., Barna B., Mansfield J. W. (1995). Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. Planta 197 240–249. 10.1007/BF00202643 - DOI
    1. Agarwala S., Sairama R. K., Srivastavaa G. C., Tyagib A., Meena R. C. (2005). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci. 169 559–570. 10.1016/j.plantsci.2005.05.004 - DOI
    1. Akter K., Kato M., Sato Y., Kaneko Y., Takezawa D. (2014). Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha. J. Plant Physiol. 171 1334–1343. 10.1016/j.jplph.2014.05.004 - DOI - PubMed
    1. An C., Mou Z. (2011). Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53 412–428. 10.1111/j.1744-7909.2011.01043.x - DOI - PubMed
    1. Bi Y. M., Kenton P., Mur L., Darby R., Draper J. (1995). Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 8 235–245. 10.1046/j.1365-313X.1995.08020235.x - DOI - PubMed

LinkOut - more resources