Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1986 Spring;7(1):33-49.

Antagonism of dithiobiuret toxicity in rats

  • PMID: 3012425
Comparative Study

Antagonism of dithiobiuret toxicity in rats

K D Williams et al. Neurotoxicology. 1986 Spring.

Abstract

Daily administration of dithiobiuret (DTB, 1 mg/kg X 6 days, ip) produced delayed onset muscle weakness in rats as indicated by failure in a treadmill test. In nerve-muscle preparations from DTB-intoxicated rats neuromuscular toxicity was manifested as contractile fatigue during tetanic nerve stimulation. As muscle weakness developed, feed intake decreased and the animals lost body weight. Water intake was not altered during this time, but urine output was increased concomitant with the development of muscle weakness and resulted in a state of negative water balance. Daily administration of d-penicillamine (d-PEN) antagonized DTB-induced treadmill failure in a dose-dependent fashion. A daily dose of d-PEN (1 mMol/kg, ip) that completely antagonized treadmill failure also antagonized the contractile fatigue, reduced feed intake, weight loss and negative water balance caused by DTB administration. In rats already intoxicated with DTB, initiating daily d-PEN treatment or discontinuing further DTB administration, caused the animals to recover normal treadmill performance after a latent period of five days. A single dose of d-PEN (1 mMol/kg, iv) was not effective in reversing treadmill failure or contractile fatigue in rats already intoxicated with DTB. Thus, continuous daily administration of d-PEN was necessary for it to be effective. A single dose of d-PEN (1 m Mol/kg, ip) administered one hr after [14C]-DTB (1 mg/kg, ip) did not affect the plasma and tissue concentrations of DTB-derived radioactivity or their corresponding elimination kinetics. Cumulative urinary and fecal excretion of DTB-derived radioactivity were also unaffected by d-PEN administration as were the relative proportions of DTB and two of its metabolites, monothiobiuret and thiuret, in urine. Other agents that produced dose-dependent antagonism of DTB toxicity were diethyldithiocarbamate, disulfiram, cysteamine and 2,2'-dipyridyl. Considering the chemical and biological properties of DTB and its antagonists, a mechanism of antagonism involving an alteration of the thiol-disulfide and/or divalent metal cation status of motor axon terminals is postulated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources