Conformational switch in the ribosomal protein S1 guides unfolding of structured RNAs for translation initiation
- PMID: 30124944
- PMCID: PMC6237739
- DOI: 10.1093/nar/gky746
Conformational switch in the ribosomal protein S1 guides unfolding of structured RNAs for translation initiation
Abstract
Initiation of bacterial translation requires that the ribosome-binding site in mRNAs adopts single-stranded conformations. In Gram-negative bacteria the ribosomal protein S1 (rS1) is a key player in resolving of structured elements in mRNAs. However, the exact mechanism of how rS1 unfolds persistent secondary structures in the translation initiation region (TIR) is still unknown. Here, we show by NMR spectroscopy that Vibrio vulnificus rS1 displays a unique architecture of its mRNA-binding domains, where domains D3 and D4 provide the mRNA-binding platform and cover the nucleotide binding length of the full-length rS1. D5 significantly increases rS1's chaperone activity, although it displays structural heterogeneity both in isolation and in presence of the other domains, albeit to varying degrees. The heterogeneity is induced by the switch between the two equilibrium conformations and is triggered by an order-to-order transition of two mutually exclusive secondary structures (β-strand-to-α-helix) of the 'AERERI' sequence. The conformational switching is exploited for melting of structured 5'-UTR's, as the conformational heterogeneity of D5 can compensate the entropic penalty of complex formation. Our data thus provides a detailed understanding of the intricate coupling of protein and RNA folding dynamics enabling translation initiation of structured mRNAs.
Figures







Similar articles
-
Switching at the ribosome: riboswitches need rProteins as modulators to regulate translation.Nat Commun. 2021 Aug 5;12(1):4723. doi: 10.1038/s41467-021-25024-5. Nat Commun. 2021. PMID: 34354064 Free PMC article.
-
NMR structure of the Vibrio vulnificus ribosomal protein S1 domains D3 and D4 provides insights into molecular recognition of single-stranded RNAs.Nucleic Acids Res. 2021 Jul 21;49(13):7753-7764. doi: 10.1093/nar/gkab562. Nucleic Acids Res. 2021. PMID: 34223902 Free PMC article.
-
Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.Cell. 2007 Sep 21;130(6):1019-31. doi: 10.1016/j.cell.2007.07.008. Cell. 2007. PMID: 17889647
-
[Mechanisms controlling the process of ribosome reaction with the messenger RNA of prokaryotes].Nauchnye Doki Vyss Shkoly Biol Nauki. 1978;(5):7-26. Nauchnye Doki Vyss Shkoly Biol Nauki. 1978. PMID: 352410 Review. Russian. No abstract available.
-
Structures of regulatory elements in mRNAs.Curr Opin Struct Biol. 2006 Jun;16(3):299-306. doi: 10.1016/j.sbi.2006.05.001. Epub 2006 May 16. Curr Opin Struct Biol. 2006. PMID: 16707260 Review.
Cited by
-
Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer.Mol Microbiol. 2020 Sep;114(3):391-408. doi: 10.1111/mmi.14514. Epub 2020 May 2. Mol Microbiol. 2020. PMID: 32291821 Free PMC article.
-
Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023.Int J Mol Sci. 2024 Mar 3;25(5):2957. doi: 10.3390/ijms25052957. Int J Mol Sci. 2024. PMID: 38474204 Free PMC article. Review.
-
Switching at the ribosome: riboswitches need rProteins as modulators to regulate translation.Nat Commun. 2021 Aug 5;12(1):4723. doi: 10.1038/s41467-021-25024-5. Nat Commun. 2021. PMID: 34354064 Free PMC article.
-
Protein unties the pseudoknot: S1-mediated unfolding of RNA higher order structure.Nucleic Acids Res. 2020 Feb 28;48(4):2107-2125. doi: 10.1093/nar/gkz1166. Nucleic Acids Res. 2020. PMID: 31832686 Free PMC article.
-
NMR structure of the Vibrio vulnificus ribosomal protein S1 domains D3 and D4 provides insights into molecular recognition of single-stranded RNAs.Nucleic Acids Res. 2021 Jul 21;49(13):7753-7764. doi: 10.1093/nar/gkab562. Nucleic Acids Res. 2021. PMID: 34223902 Free PMC article.
References
-
- Cristofari G., Darlix J.-L.. The ubiquitous nature of RNA chaperone proteins. Prog. Nucleic Acid Res. Mol. Biol. 2002; 72:223–268. - PubMed
-
- Rajkowitsch L., Chen D., Stampfl S., Semrad K., Waldsich C., Mayer O., Jantsch M.F., Konrat R., Bläsi U., Schroeder R.. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 2007; 4:118–130. - PubMed
-
- Herschlag D. RNA chaperones and the RNA folding problem. J. Biol. Chem. 1995; 270:20871–20874. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources