Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;30(39):e1802721.
doi: 10.1002/adma.201802721. Epub 2018 Aug 20.

0.2 λ0 Thick Adaptive Retroreflector Made of Spin-Locked Metasurface

Affiliations

0.2 λ0 Thick Adaptive Retroreflector Made of Spin-Locked Metasurface

Libin Yan et al. Adv Mater. 2018 Sep.

Abstract

The metasurface concept is employed to planarize retroflectors by stacking two metasurfaces with separation that is two orders larger than the wavelength. Here, a retroreflective metasurface using subwavelength-thick reconfigurable C-shaped resonators (RCRs) is reported, which reduces the overall thickness from the previous record of 590 λ0 down to only 0.2 λ0 . The geometry of RCRs could be in situ controlled to realize equal amplitude and phase modulation onto transverse magnetic (TM)-polarized and transverse electric (TE)-polarized incidences. With the phase gradient being engineered, an in-plane momentum could be imparted to the incident wave, guaranteeing the spin state of the retro-reflected wave identical to that of the incident light. Such spin-locked metasurface is natively adaptive toward different incident angles to realize retroreflection by mechanically altering the geometry of RCRs. As a proof of concept, an ultrathin retroreflective metasurface is validated at 15 GHz, under various illumination angles at 10°, 12°, 15°, and 20°. Such adaptive spin-locked metasurface could find promising applications in spin-based optical devices, communication systems, remote sensing, RCS enhancement, and so on.

Keywords: adaptive metasurfaces; retroreflection; spin-lock; subwavelength-thickness.

PubMed Disclaimer

LinkOut - more resources