D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase
- PMID: 3013300
- DOI: 10.1021/bi00357a004
D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase
Abstract
The respiratory chain in the cytochrome d deficient mutant Escherichia coli GR19N is a relatively simple, linear system consisting of primary dehydrogenases, ubiquinone 8, cytochrome b-556, and cytochrome o oxidase. By use of right-side-out and inside-out membrane vesicles from this strain, various oxidase activities and the generation of the H+ electrochemical gradient were studied. Oxidation of ubiquinol 1 or N,N,-N',N'-tetramethyl-p-phenylenediamine, which donate electrons directly to the terminal oxidase, generates a H+ electrochemical gradient comparable to that observed during D-lactate oxidation. In contrast, D-lactate/ubiquinone 1 or D-lactate/ferricyanide oxidoreductase activity does not appear to generate a membrane potential, suggesting that electron flow from D-lactate dehydrogenase to ubiquinone is not electrogenic. Moreover, proteoliposomes reconstituted with purified D-lactate dehydrogenase, ubiquinone 8, and purified cytochrome o catalyze D-lactate and ubiquinol 1 oxidation and generate a H+ electrochemical gradient similar to that observed in membrane vesicles. Strikingly, in inside-out vesicles, NADH oxidation generates a H+ electrochemical gradient that is very significantly greater than that produced by either D-lactate or ubiquinol 1; furthermore, NADH/ubiquinone 1 and NADH/ferricyanide oxidoreductase activities are electrogenic. It is suggested that the only component between D-lactate dehydrogenase or ubiquinol and oxygen in GR19N membranes that is directly involved in the generation of the H+ electrochemical gradient is cytochrome o, which functions as a "half-loop" (i.e., the oxidase catalyzes the scalar release of 2 H+ from ubiquinol on the outer surface of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Molecular Biology Databases