Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov:107:703-711.
doi: 10.1016/j.biopha.2018.08.040. Epub 2018 Aug 20.

MicroRNA-92a antagonism attenuates lipopolysaccharide (LPS)-induced pulmonary inflammation and injury in mice through suppressing the PTEN/AKT/NF-κB signaling pathway

Affiliations

MicroRNA-92a antagonism attenuates lipopolysaccharide (LPS)-induced pulmonary inflammation and injury in mice through suppressing the PTEN/AKT/NF-κB signaling pathway

Liming Fu et al. Biomed Pharmacother. 2018 Nov.

Abstract

Overwhelming lung inflammation is a key feature of acute lung injury (ALI). MicroRNAs (miRNAs) have been implicated in the regulation diverse cellular processes including the inflammatory response. However, little is known about their functions and molecular involvement in regulating the inflammatory process in ALI. Herein, we established a lipopolysaccharide (LPS)-induced ALI mouse model and used miRNA microarray analysis to investigate and compare the miRNA expression profiles in mouse lung tissues. We found that miR-92a was markedly upregulated in the lung tissues of ALI mice compared with that in normal lung tissues. This upregulation of miR-92a in LPS-induced ALI mice was further confirmed in lung tissues, splenocytes and bronchoalveolar lavage fluid (BALF) by quantitative real-time PCR. Inhibition of miR-92a by injection with antagomir-92a markedly reduced LPS-induced pathological changes associated with lung inflammation, and reduces lung wet/dry ratio (W/D ratio), and Evans blue dye extravasation (an indicator of lung epithelial permeability). Moreover, inhibition of miR-92a ameliorated the inflammatory response by reducing the repression of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 in lung tissues. In addition, we identified that miR-92a inhibited the phosphatase and tensin homolog on chromosome ten (PTEN) by binding to its 3'-UTR in RAW264.7 murine macrophage cells. Western blot analysis demonstrated that inhibition of miR-92a may ameliorate inflammatory response through blocking PTEN/AKT/NF-κB signaling pathway in ALI mice. Collectively, these results have revealed a significant role of miR-92a in the lung inflammatory response associated with ALI in mice, and suggest that miR-92a may have potential as a prognostic indicator and novel therapeutic target for the treatment of ALI in future.

Keywords: Acute lung injury; Inflammation; Mice; PTEN/AKT/NF-κB; Signaling pathway; miR-92a.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources