Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Dec;12(s2):s272-s281.
doi: 10.1017/S1751731118001994. Epub 2018 Aug 24.

Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities

Affiliations
Free article
Review

Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities

P G Toral et al. Animal. 2018 Dec.
Free article

Abstract

Growth in demand for foods with potentially beneficial effects on consumer health has motivated increased interest in developing strategies for improving the nutritional quality of ruminant-derived products. Manipulation of the rumen environment offers the opportunity to modify the lipid composition of milk and meat by changing the availability of fatty acids (FA) for mammary and intramuscular lipid uptake. Dietary supplementation with marine lipids, plant secondary compounds and direct-fed microbials has shown promising results. In this review, we have compiled information about their effects on the concentration of putative desirable FA (e.g. c9t11-CLA and vaccenic, oleic, linoleic and linolenic acids) in ruminal digesta, milk and intramuscular fat. Marine lipids rich in very long-chain n-3 polyunsaturated fatty acids (PUFA) efficiently inhibit the last step of C18 FA biohydrogenation (BH) in the bovine, ovine and caprine, increasing the outflow of t11-18:1 from the rumen and improving the concentration of c9t11-CLA in the final products, but increments in t10-18:1 are also often found due to shifts toward alternative BH pathways. Direct-fed microbials appear to favourably modify rumen lipid metabolism but information is still very limited, whereas a wide variety of plant secondary compounds, including tannins, polyphenol oxidase, essential oils, oxygenated FA and saponins, has been examined with varying success. For example, the effectiveness of tannins and essential oils is as yet controversial, with some studies showing no effects and others a positive impact on inhibiting the first step of BH of PUFA or, less commonly, the final step. Further investigation is required to unravel the causes of inconsistent results, which may be due to the diversity in active components, ruminant species, dosage, basal diet composition and time on treatments. Likewise, research must continue to address ways to mitigate negative side-effects of some supplements on animal performance (particularly, milk fat depression) and product quality (e.g. altered oxidative stability and shelf-life).

Keywords: biohydrogenation; fish oil; plant secondary compounds; probiotics; ruminant.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources