Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension
- PMID: 30141981
- PMCID: PMC6297810
- DOI: 10.1152/ajpheart.00136.2018
Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension
Abstract
Pulmonary arterial hypertension (PAH) is characterized by remodeling of the extracellular matrix (ECM) of the pulmonary arteries with increased collagen deposition, cross-linkage of collagen, and breakdown of elastic laminae. Extracellular matrix remodeling occurs due to an imbalance in the proteolytic enzymes, such as matrix metalloproteinases, elastases, and lysyl oxidases, and tissue inhibitor of matrix metalloproteinases, which, in turn, results from endothelial cell dysfunction, endothelial-to-mesenchymal transition, and inflammation. ECM remodeling and pulmonary vascular stiffness occur early in the disease process, before the onset of the increase in the intimal and medial thickness and pulmonary artery pressure, suggesting that the ECM is a cause rather than a consequence of distal pulmonary vascular remodeling. ECM remodeling and increased pulmonary arterial stiffness promote proliferation of pulmonary vascular cells (endothelial cells, smooth muscle cells, and adventitial fibroblasts) through mechanoactivation of various signaling pathways, including transcriptional cofactors YAP/TAZ, transforming growth factor-β, transient receptor potential channels, Toll-like receptor, and NF-κB. Inhibition of ECM remodeling and mechanotransduction prevents and reverses experimental pulmonary hypertension. These data support a central role for ECM remodeling in the pathogenesis of the PAH, making it an attractive novel therapeutic target.
Keywords: collagen; compliance; mechanotransduction; right ventricle; stiffness.
Figures



Comment in
-
The extracellular matrix in early and advanced pulmonary arterial hypertension.Am J Physiol Heart Circ Physiol. 2018 Dec 1;315(6):H1684-H1686. doi: 10.1152/ajpheart.00620.2018. Epub 2018 Sep 28. Am J Physiol Heart Circ Physiol. 2018. PMID: 30265148 No abstract available.
Similar articles
-
Lysyl oxidases play a causal role in vascular remodeling in clinical and experimental pulmonary arterial hypertension.Arterioscler Thromb Vasc Biol. 2014 Jul;34(7):1446-58. doi: 10.1161/ATVBAHA.114.303534. Epub 2014 May 15. Arterioscler Thromb Vasc Biol. 2014. PMID: 24833797
-
Pathobiology of pulmonary arterial hypertension: understanding the roads less travelled.Eur Respir Rev. 2017 Dec 20;26(146):170093. doi: 10.1183/16000617.0093-2017. Print 2017 Dec 31. Eur Respir Rev. 2017. PMID: 29263173 Free PMC article. Review.
-
Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension.J Clin Invest. 2016 Sep 1;126(9):3313-35. doi: 10.1172/JCI86387. Epub 2016 Aug 22. J Clin Invest. 2016. PMID: 27548520 Free PMC article.
-
Glycyrrhizin, inhibitor of high mobility group box-1, attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling in rats.Respir Res. 2014 Nov 25;15:148. doi: 10.1186/s12931-014-0148-4. Respir Res. 2014. PMID: 25420924 Free PMC article.
-
Inflammation in pulmonary artery hypertension.Vascul Pharmacol. 2019 Jul-Aug;118-119:106562. doi: 10.1016/j.vph.2019.05.002. Epub 2019 May 18. Vascul Pharmacol. 2019. PMID: 31112745 Review. No abstract available.
Cited by
-
Mechanobiology of Pulmonary Diseases: A Review of Engineering Tools to Understand Lung Mechanotransduction.J Biomech Eng. 2021 Nov 1;143(11):110801. doi: 10.1115/1.4051118. J Biomech Eng. 2021. PMID: 33973005 Free PMC article. Review.
-
Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening.Front Immunol. 2022 Oct 5;13:959209. doi: 10.3389/fimmu.2022.959209. eCollection 2022. Front Immunol. 2022. PMID: 36275740 Free PMC article. Review.
-
Bmi-1 alleviates adventitial fibroblast senescence by eliminating ROS in pulmonary hypertension.BMC Pulm Med. 2021 Mar 5;21(1):80. doi: 10.1186/s12890-021-01439-0. BMC Pulm Med. 2021. PMID: 33673825 Free PMC article.
-
l-Citrulline treatment alters the structure of the pulmonary circulation in hypoxic newborn pigs.Pediatr Pulmonol. 2020 Oct;55(10):2762-2772. doi: 10.1002/ppul.24960. Epub 2020 Jul 24. Pediatr Pulmonol. 2020. PMID: 32662946 Free PMC article.
-
Arterial Wall Stiffening in Caveolin-1 Deficiency-Induced Pulmonary Artery Hypertension in Mice.Exp Mech. 2021 Jan;6(1):217-228. doi: 10.1007/s11340-020-00666-6. Epub 2020 Oct 14. Exp Mech. 2021. PMID: 33776068 Free PMC article.
References
-
- Anand V, Roy SS, Archer SL, Weir EK, Garg SK, Duval S, Thenappan T. Trends and outcomes of pulmonary arterial hypertension-related hospitalizations in the United States: analysis of the nationwide inpatient sample database from 2001 through 2012. JAMA Cardiol 1: 1021–1029, 2016. doi:10.1001/jamacardio.2016.3591. - DOI - PubMed
-
- Anwar A, Li M, Frid MG, Kumar B, Gerasimovskaya EV, Riddle SR, McKeon BA, Thukaram R, Meyrick BO, Fini MA, Stenmark KR. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 303: L1–L11, 2012. doi:10.1152/ajplung.00050.2012. - DOI - PMC - PubMed
-
- Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, Frost A, Barst RJ, Badesch DB, Elliott CG, Liou TG, McGoon MD. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122: 164–172, 2010. doi:10.1161/CIRCULATIONAHA.109.898122. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical