Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Jun;62(6):103527.
doi: 10.1016/j.ejmg.2018.08.008. Epub 2018 Aug 22.

TRPM4 mutations to cause autosomal recessive and not autosomal dominant Brugada type 1 syndrome

Affiliations
Meta-Analysis

TRPM4 mutations to cause autosomal recessive and not autosomal dominant Brugada type 1 syndrome

Alexandre Janin et al. Eur J Med Genet. 2019 Jun.

Abstract

Cardiac channelopathies, mainly Long QT and Brugada syndromes, are genetic disorders for which genotype/phenotypes relationships remains to be improved. To provide new insights into the Brugada syndrome pathophysiology, a mutational study was performed on a 64-year-old man presented with isolated exertional dyspnea (NYHA class: II-III), hypertension, chronic kidney disease, coronary disease, an electrocardiogram suggesting a Brugada type 1-like pattern with ST-segment elevation in leads V1-V2. Molecular diagnosis study was performed using molecular strategy based on the sequencing of a panel of 19 Brugada-associated genes. The proband was carrier of 2 TRPM4 null alleles [IVS9+1G > A and p. Trp525X] resulting in the absence of functional hTRPM4 proteins. Due to this unexpected genotype, meta-analysis of previously reported TRPM4 variations associated with cardiac pathologies was performed using ACMG guidelines. All were detected in a heterozygous status. This additional meta-analysis indicated that most of them could not be considered definitely as pathogen. In conclusion, our study reports, for the first time, identification of compound heterozygous TRPM4 null mutations in a proband with, at an arrhythmogenic level, only a Brugada type 1-like electrocardiogram. By combining the genotype/phenotype relationship of this case and analysis of previously reported TRPM4 variations, we suggest that loss-of-function TRPM4 variations, in a heterozygous status, could not be considered as pathogenic or likely pathogenic mutations in cardiac channelopathies such as Long QT syndrome or Brugada syndrome.

Keywords: Arrhythmia disorders; Brugada syndrome; Cardiac channelopathies; Molecular diagnosis; TRPM4; Truncating mutations.

PubMed Disclaimer

LinkOut - more resources