Muscle Wasting Diseases: Novel Targets and Treatments
- PMID: 30148697
- PMCID: PMC6701981
- DOI: 10.1146/annurev-pharmtox-010818-021041
Muscle Wasting Diseases: Novel Targets and Treatments
Abstract
Adequate skeletal muscle plasticity is an essential element for our well-being, and compromised muscle function can drastically affect quality of life, morbidity, and mortality. Surprisingly, however, skeletal muscle remains one of the most under-medicated organs. Interventions in muscle diseases are scarce, not only in neuromuscular dystrophies, but also in highly prevalent secondary wasting pathologies such as sarcopenia and cachexia. Even in other diseases that exhibit a well-established risk correlation of muscle dysfunction due to a sedentary lifestyle, such as type 2 diabetes or cardiovascular pathologies, current treatments are mostly targeted on non-muscle tissues. In recent years, a renewed focus on skeletal muscle has led to the discovery of various novel drug targets and the design of new pharmacological approaches. This review provides an overview of the current knowledge of the key mechanisms involved in muscle wasting conditions and novel pharmacological avenues that could ameliorate muscle diseases.
Keywords: atrophy; exon skipping; gene therapy; muscle wasting; muscular dystrophy; proteostasis.
Conflict of interest statement
The authors have no conflict of interest related to this manuscript.
Figures

References
-
- Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports. 2015;25(Suppl 3):1–72. - PubMed
-
- Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 2010;205:201–10. - PubMed
-
- Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14:395–403. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources