Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 25;57(38):5524-5532.
doi: 10.1021/acs.biochem.8b00775. Epub 2018 Sep 10.

Kinetic Mechanism of Nicotinamide N-Methyltransferase

Affiliations

Kinetic Mechanism of Nicotinamide N-Methyltransferase

Heather S Loring et al. Biochemistry. .

Abstract

Nicotinamide N-methyltransferase (NNMT) catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to nicotinamide, pyridine, and other structural analogues. Aberrantly increased NNMT activity results in the depletion of SAM, nicotinamide (NAM), and nicotinamide adenine dinucleotide (NAD+); NAM is required for NAD+ biosynthesis. SAM depletion impairs the methylation potential of the cell, resulting in hypomethylated histones and an altered epigenetic profile. In addition, decreased NAD+ levels negatively affect energy metabolism by disrupting oxidative phosphorylation. Because of its impact on epigenetic states and NAD+ levels, NNMT is implicated in cancer, neurodegenerative diseases, and metabolic diseases, making it an appealing target for therapeutic intervention. To gain insights that would guide the design of inhibitors and activity-based probes, we performed detailed kinetic studies of human NNMT. Herein, we report the kinetic mechanism of NNMT. Our initial velocity, product inhibition, and dead-end analogue inhibition studies collectively indicate that NNMT uses a rapid equilibrium ordered mechanism, where NNMT first binds SAM, which is followed by NAM. Methyl transfer occurs, and methylated NAM and S-adenosylhomocysteine are released consecutively.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources