Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 14:457:152-162.
doi: 10.1016/j.jtbi.2018.08.029. Epub 2018 Aug 24.

Fast-slow analysis of the Integrated Oscillator Model for pancreatic β-cells

Affiliations

Fast-slow analysis of the Integrated Oscillator Model for pancreatic β-cells

Joseph P McKenna et al. J Theor Biol. .

Abstract

Insulin-secreting pancreatic β-cells are electrically excitable cells that are unusual because their electrical activity is influenced directly by metabolism via ATP-sensitive K+ channels. At the same time, changes in the intracellular Ca2+concentration that result from the cell's electrical activity influence metabolism in several ways. Thus, there is bidirectional coupling between the electrical dynamics and the metabolic dynamics in β-cells. A mathematical model has been previously developed, called the Integrated. Oscillator Model (IOM), to highlight the bidirectional coupling involved in the oscillation mechanism. In this study, we show how this coupling can produce oscillations in β-cell activity. These oscillations have period similar to that of insulin secretion pulses observed in rats, mice, dogs, and humans, which has been shown to facilitate the action of the liver in maintaining glucose homeostasis. In a companion paper we show that the IOM can produce oscillations using two distinct mechanisms, depending on the values of electrical and metabolic parameters. In the present article, we use fast-slow analysis to understand the mechanisms underlying each of these oscillations. In particular, we show why a key variable in the glycolytic pathway generates a pulsatile time course in one type of oscillation, while it generates a sawtooth time course in the other type. The significance of these patterns is that the time course is a reflection of whether an intrinsic glycolytic oscillator is active, or whether the oscillations are a direct consequence of Ca2+ feedback onto glycolysis.

Keywords: beta-cells; bursting; fast-slow analysis; multiscale.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources