Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 27;8(9):666.
doi: 10.3390/nano8090666.

TiO₂ Nanotubes/Ag/MoS₂ Meshy Photoelectrode with Excellent Photoelectrocatalytic Degradation Activity for Tetracycline Hydrochloride

Affiliations

TiO₂ Nanotubes/Ag/MoS₂ Meshy Photoelectrode with Excellent Photoelectrocatalytic Degradation Activity for Tetracycline Hydrochloride

Tingting Li et al. Nanomaterials (Basel). .

Abstract

A novel type of TiO₂ nanotubes (NTs)/Ag/MoS₂ meshy photoelectrode was fabricated with highly oriented TiO₂ nanotube arrays grown from a Ti mesh supporting Ag nanoparticles and three-dimensional MoS₂ nanosheets. In this structure, Ag nanoparticles act as bridges to connect MoS₂ and TiO₂ and pathways for electron transfer, ensuring the abundant production of active electrons, which are the source of •O₂-. The TiO₂ NTs/Ag/MoS₂ mesh can be used as both photocatalyst and electrode, exhibiting enhanced photoelectrocatalytic efficiency in degrading tetracycline hydrochloride under visible light irradiation (λ ≥ 420 nm). Compared to unmodified TiO₂ NTs, the improved photoelectrocatalytic activity of the TiO₂ NTs/Ag/MoS₂ arise from the formation of Z-scheme heterojunctions, which facilitate the efficient separation of photogenerated electron-hole pairs through the Schottky barriers at the interfaces of TiO₂ NTs⁻Ag and Ag⁻MoS₂.

Keywords: TiO2 nanotubes/Ag/MoS2; photoelectrocatalytic degradation; photoelectrode; tetracycline hydrochloride.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Digital pictures of (a) TiO2 nanotubes (NTs); (b) TiO2 NTs/Ag; (c) TiO2 NTs/MoS2; and (d) TiO2 NTs/Ag/MoS2 mesh.
Figure 2
Figure 2
SEM images of (a) TiO2 NTs; (b) TiO2 NTs/Ag; and (c) TiO2 NTs/Ag/MoS2; (d) EDS analysis of TiO2 NTs/Ag/MoS2.
Figure 3
Figure 3
TEM images of (a) TiO2 NTs; (b) TiO2 NTs/Ag; and (c) TiO2 NTs/Ag/MoS2 (inset: SAED pattern); (d) HRTEM image of TiO2 NTs/Ag/MoS2.
Figure 4
Figure 4
XRD patterns of (a) TiO2 NTs; (b) TiO2 NTs/Ag; and (c) TiO2 NTs/Ag/MoS2.
Figure 5
Figure 5
X-ray photoelectron spectroscopy (XPS) spectra of TiO2 NTs/Ag/MoS2: (a) survey, (b) Ag 3d, (c) Ti 2p, (d) Mo 3d, and (e) S 2p.
Figure 6
Figure 6
Nitrogen absorption–desorption isotherms of TiO2 NTs, TiO2 NTs/Ag, TiO2 NTs/MoS2, and TiO2 NTs/Ag/MoS2.
Figure 7
Figure 7
(a) UV-vis diffuse reflectance spectra; (b) PL spectra of TiO2 NTs, TiO2 NTs/Ag, TiO2 NTs/MoS2, and TiO2 NTs/Ag/MoS2.
Figure 8
Figure 8
(a) Photocurrent responses; (b) electrochemical impedance spectroscopy (EIS) Nyquist plots of TiO2 NTs, TiO2 NTs/Ag, TiO2 NTs/MoS2, and TiO2 NTs/Ag/MoS2.
Figure 9
Figure 9
(a) The photoelectrocatalytic (PEC) efficiencies of TC·HCl under different conditions; (b) UV-vis absorption spectra for the degradation of TC·HCl on the TiO2 NTs/Ag/MoS2.
Figure 10
Figure 10
Cycling runs in the PEC degradation of TC·HCl over the TiO2 NTs/Ag/MoS2.
Figure 11
Figure 11
The PEC efficiencies of TC·HCl with different scavengers over the TiO2 NTs/Ag/MoS2: no scavenger; with 1 mM ethylenediamintetraacetic acid disodium (EDTA-2Na); with 1 mM tert-butyl alcohol (TBA); and with 1 mM 1,4-benzoquinone (BQ).
Scheme 1
Scheme 1
Schematic illustration of proposed mechanism of the photogenerated electrons and holes transfer in the TiO2 NTs/Ag/MoS2 interface.

Similar articles

Cited by

References

    1. Sui Q., Cao X.Q., Lu S.G., Zhao W.T., Qiu Z.F., Yu G. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerg. Contam. 2015;1:14–24. doi: 10.1016/j.emcon.2015.07.001. - DOI
    1. He D., Sun Y.B., Xin L., Feng J.W. Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2. Chem. Eng. J. 2014;258:18–25. doi: 10.1016/j.cej.2014.07.089. - DOI
    1. Gao P.P., Mao D.Q., Luo Y., Wang L.M., Xu B.J., Xu L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012;46:2355–2364. doi: 10.1016/j.watres.2012.02.004. - DOI - PubMed
    1. Chen F., Yang Q., Li X.M., Zeng G.M., Wang D.B., Niu C.G., Zhao J.W., An H.X., Xie T., Deng Y.C. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/ BiVO4(040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl. Catal. B Environ. 2017;200:330–342. doi: 10.1016/j.apcatb.2016.07.021. - DOI
    1. Backhaus T., Grimme L.H. The toxicity of antibiotic agentsto the luminescent bacterium Vibrio fischeri. Chemosphere. 1999;38:3291–3301. doi: 10.1016/S0045-6535(98)00560-8. - DOI - PubMed

LinkOut - more resources