Quantitative distribution of angiotensin-converting enzyme (kininase II) in discrete areas of the rat brain by autoradiography with computerized microdensitometry
- PMID: 3015330
- DOI: 10.1016/0006-8993(86)90746-8
Quantitative distribution of angiotensin-converting enzyme (kininase II) in discrete areas of the rat brain by autoradiography with computerized microdensitometry
Abstract
We report the localization of angiotensin-converting enzyme (kininase II, EC 3.4.15.1) in discrete nuclei and areas of the rat brain by a quantitative autoradiographic technique using image processing coupled to computerized microdensitometry, after incubation of brain sections with the specific converting enzyme inhibitor [125I]351A. High angiotensin-converting enzyme levels are present in circumventricular organs (organon subfornicalis and area postrema), the choroid plexus, and extrapyramidal areas (nucleus caudatus, globus pallidus and substantia nigra) with intermediate levels in selected hypothalamic, septal, habenular and brainstem nuclei. Our results support the idea that angiotensin II could be formed in specific brain areas, both outside and inside the blood-brain barrier. In other brain structures, such as the extrapyramidal areas, kininase II could be involved in the processing or metabolism of other brain peptides.
Similar articles
-
Quantitative autoradiographic determination of angiotensin-converting enzyme (kininase II) binding in individual rat brain nuclei with 125I-351A, a specific enzyme inhibitor.Brain Res. 1985 Nov 11;347(1):192-5. doi: 10.1016/0006-8993(85)90912-6. Brain Res. 1985. PMID: 2996715
-
Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography.Neuroscience. 1987 Feb;20(2):615-27. doi: 10.1016/0306-4522(87)90114-x. Neuroscience. 1987. PMID: 3035425
-
Angiotensin-converting enzyme is present in the subfornical organ and other circumventricular organs of the rat.Neurosci Lett. 1982 Apr 16;29(2):123-7. doi: 10.1016/0304-3940(82)90340-8. Neurosci Lett. 1982. PMID: 6283434
-
Serotonin receptors in brain revisited.Brain Res. 2016 Aug 15;1645:46-9. doi: 10.1016/j.brainres.2015.12.042. Epub 2015 Dec 29. Brain Res. 2016. PMID: 26740406 Review.
-
Localization of specific binding sites for atrial natriuretic factor in the central nervous system of rat, guinea pig, cat and human.Brain Res. 1987 Jun 2;412(2):329-42. doi: 10.1016/0006-8993(87)91140-1. Brain Res. 1987. PMID: 2955851 Review.
Cited by
-
The hypothalamus as a key regulator of glucose homeostasis: emerging roles of the brain renin-angiotensin system.Am J Physiol Cell Physiol. 2023 Jul 1;325(1):C141-C154. doi: 10.1152/ajpcell.00533.2022. Epub 2023 Jun 5. Am J Physiol Cell Physiol. 2023. PMID: 37273237 Free PMC article. Review.
-
Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats.Hypertension. 2008 Oct;52(4):679-86. doi: 10.1161/HYPERTENSIONAHA.108.113639. Epub 2008 Sep 2. Hypertension. 2008. PMID: 18768402 Free PMC article.
-
Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism.Physiol Genomics. 2017 Dec 1;49(12):722-732. doi: 10.1152/physiolgenomics.00087.2017. Epub 2017 Oct 6. Physiol Genomics. 2017. PMID: 28986397 Free PMC article. Review.
-
Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development.Pharmacol Res. 2021 Jun;168:105581. doi: 10.1016/j.phrs.2021.105581. Epub 2021 Mar 26. Pharmacol Res. 2021. PMID: 33781873 Free PMC article. Review.
-
Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control.Am J Physiol Regul Integr Comp Physiol. 2015 Sep;309(5):R444-58. doi: 10.1152/ajpregu.00078.2015. Epub 2015 Jun 17. Am J Physiol Regul Integr Comp Physiol. 2015. PMID: 26084692 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources