Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 12;140(36):11408-11415.
doi: 10.1021/jacs.8b06398. Epub 2018 Aug 30.

Ligand-Induced Reductive Elimination of Ethane from Azopyridine Palladium Dimethyl Complexes

Affiliations

Ligand-Induced Reductive Elimination of Ethane from Azopyridine Palladium Dimethyl Complexes

Andrey E Rudenko et al. J Am Chem Soc. .

Abstract

Reductive elimination (RE) is a critical step in many catalytic processes. The reductive elimination of unsaturated groups (aryl, vinyl and ethynyl) from Pd(II) species is considerably faster than RE of saturated alkyl groups. Pd(II) dimethyl complexes ligated by chelating diimine ligands are stable toward RE unless subjected to a thermal or redox stimulus. Herein, we report the spontaneous RE of ethane from (azpy)PdMe2 complexes and the unique role of the redox-active azopyridine (azpy) ligands in facilitating this reaction. The (azpy)PdMe2 complexes are air- and moisture-stable in the solid form, but they readily produce ethane upon dissolution in polar solvents at temperatures from 10 °C to room temperature without the need for an external oxidant or elevated temperatures. Experimental and computational studies indicate that a bimolecular methyl transfer precedes the reductive elimination step, where both steps are facilitated by the redox-active azopyridine ligand.

PubMed Disclaimer

Publication types

LinkOut - more resources