Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 11;34(49):14858-14868.
doi: 10.1021/acs.langmuir.8b01635. Epub 2018 Sep 13.

Interactions of Cationic Lipids with DNA: A Structural Approach

Affiliations

Interactions of Cationic Lipids with DNA: A Structural Approach

Matthias Dittrich et al. Langmuir. .

Abstract

Colloidal nucleic acid carrier systems based on cationic lipids are a promising pharmaceutical tool in the implementation of gene therapeutic strategies. This study demonstrates the complex behavior of DNA at the lipid-solvent interface facilitating structural changes of the lyotropic liquid-crystalline phases. For this study, the structural properties of six malonic acid based cationic lipids were determined using small- and wide-angle X-ray scattering (SAXS and WAXS) as well as differential scanning calorimetry (DSC). Selected lipids (lipid 3 and lipid 6) with high nucleic acid transfer activity have been investigated in detail because of the strong influence of the zwitterionic helper lipid 1,2-di(9 Z-octadecenoyl)- sn-glycero-3-phosphoethanolamine (DOPE) on the structural properties as well as of the complex formation of lipid-DNA complexes (lipoplexes). In the case of lipid 3, DNA stabilizes a metastable cubic mesophase with Im3 m symmetry and an Im3 m Qαc lipoplex is formed, which is rarely described for DNA lipoplexes in literature. In the case of lipid 6, a cubic mesophase with Im3 m symmetry turns into a fluid lamellar phase while mixing with DOPE and complexing DNA.

PubMed Disclaimer

Publication types

LinkOut - more resources