Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 30;9(1):3534.
doi: 10.1038/s41467-018-05877-z.

Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution

Affiliations

Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution

Takayoshi Awakawa et al. Nat Commun. .

Abstract

Reprogramming of the NRPS/PKS assembly line is an attractive method for the production of new bioactive molecules. However, it is usually hampered by the loss of intimate domain/module interactions required for the precise control of chain transfer and elongation reactions. In this study, we first establish heterologous expression systems of the unique antimycin-type cyclic depsipeptides: JBIR-06 (tri-lactone) and neoantimycin (tetra-lactone), and engineer their biosyntheses by taking advantage of bioinformatic analyses and evolutionary insights. As a result, we successfully accomplish three manipulations: (i) ring contraction of neoantimycin (from tetra-lactone to tri-lactone), (ii) ring expansion of JBIR-06 (from tri-lactone to tetra-lactone), and (iii) alkyl chain diversification of JBIR-06 by the incorporation of various alkylmalonyl-CoA extender units, to generate a set of unnatural derivatives in practical yields. This study presents a useful strategy for engineering NRPS-PKS module enzymes, based on nature's diversification of the domain and module organizations.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Organization of modular enzymes involved in the biosynthesis of antimycin-type depsipeptides. C condensation, A adenylation, T thiolation, KR ketoreductase, KS ketosynthase, AT acyltransferase, ACP acyl carrier protein, MT methyltransferase, TE thioesterase, CCR crotonyl-CoA reductase/carboxylase, R1 and R2 various alkyl groups, Rstarter the acyl moiety of 3-FSA. The module and domain organizations of the starter, the module 1, and the module 2 are identical among the all three systems. The starter and the module 1 uptake 3-FSA and L-threonine, respectively, common to all pathways, but the module 2 uptake pyruvate (AntC), isoleucic acid (SmlB), and valic acid (NatB), respectively. JBIR-06 and neoantimycin systems include an additional NRPS modules (module 3) after the module 2 in the same ORF. The module 3 in SmlB uptakes phenylpyruvic acid, and the module 3 in NatB uptakes leucic acid. The PKS modules of JBIR-06 and neoantimycin systems (module 4) contain MT domain between AT and ACP, and accept malonyl-CoA as an extender unit, to yield dimethyl group at the α-position of polyketide moiety, differently from antimycin system. Furthermore, neoantimycin system includes an extra NRPS module (module 5 as NatD) which uptakes isoleucic acid or valic acid
Fig. 2
Fig. 2
Bioinformatic analyses of the antimycin PKS modules. a Alignment of the PKS modules, AntD, SmlC, and NatC. We annotated SmlC1301–1371 as an ACP domain (region 1), SmlC1372–1392 as an interdomain linker, SmlC1393–1647 as a TE domain (region 2), and NatC1391–1411 as a docking domain. b A homology model of ACPNatC (1320–1411), based on the reported crystal structure of the surfactin synthase ACP subunit (PBD: 2VSQ) as the template. c A homology model of the ACPNatC-TESmlC domains, the NRPS module from Acinetobacter baumannii (NCBI PBD ID 4ZXH_A, https://www.ncbi.nlm.nih.gov/protein/4ZXH_A) was used as the template
Fig. 3
Fig. 3
Ring contraction of neoantimycin A. a The reconstructed module structure for ring contraction. b HPLC analyses of the metabolites from transformants harboring (i) pKU518nant and (ii) pKU518nantΔnatD::smlCTE. The chromatogram represents the UV absorbance at 320 nm. * and ** indicate unidentified analogs with m/z values that were 14 and 28 less than 3b, respectively. c Engineering scheme and structure of 4
Fig. 4
Fig. 4
Ring expansion of JBIR-06. a The reconstructed module structure for ring expansion. b HPLC analyses of the metabolites from transformants harboring (i) pKU518J06 and (ii) pKU518J06ΔsmlCTE/pZH2-NatD. The chromatogram represents the UV absorbance at 320 nm. *** indicates a mixture of analogs with m/z values that are 14 less than 5. c Engineering scheme and structure of 5 and 6
Fig. 5
Fig. 5
Alkyl chain diversification of JBIR-06. a The reconstituted module structure for alkyl chain diversification. b HPLC analysis of the metabolites from transformants harboring (i) pKU518J06 and (ii) pKU518J06ΔSmlC/pZH2-SmlCATant-AntEV350G. The chromatogram represents the UV absorbance at 320 nm. c Engineering scheme and structure of the representative product 7f

References

    1. Walsh CT. Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science. 2004;303:1805–1810. doi: 10.1126/science.1094318. - DOI - PubMed
    1. Walsh CT, O’Connor SE, Schneider TL. Polyketide-nonribosomal peptide epothilone antitumor agents: the EpoA, B, C subunits. J. Ind. Microbiol. Biotechnol. 2003;30:448–455. doi: 10.1007/s10295-003-0044-2. - DOI - PubMed
    1. Wakimoto T, et al. Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat. Chem. Biol. 2014;10:648–655. doi: 10.1038/nchembio.1573. - DOI - PubMed
    1. Wakimoto T, Egami Y, Abe I. Calyculin: nature’s way of making the sponge-derived cytotoxin. Nat. Prod. Rep. 2016;33:751–760. doi: 10.1039/C5NP00123D. - DOI - PubMed
    1. Sattely ES, Fischbach MA, Walsh CT. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 2008;25:757. doi: 10.1039/b801747f. - DOI - PubMed

Publication types

MeSH terms