Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct;29(7):560-568.
doi: 10.1097/FBP.0000000000000425.

Optogenetic and chemogenetic approaches to manipulate attention, impulsivity and behavioural flexibility in rodents

Affiliations
Review

Optogenetic and chemogenetic approaches to manipulate attention, impulsivity and behavioural flexibility in rodents

Madison R Carr et al. Behav Pharmacol. 2018 Oct.

Abstract

Studies manipulating neural activity acutely with optogenetic or chemogenetic intervention in behaving rodents have increased considerably in recent years. More often, these circuit-level neural manipulations are tested within an existing framework of behavioural testing that strives to model complex executive functions or symptomologies relevant to multidimensional psychiatric disorders in humans, such as attentional control deficits, impulsivity or behavioural (in)flexibility. This methods perspective argues in favour of carefully implementing these acute circuit-based approaches to better understand and model cognitive symptomologies or their similar isomorphic animal behaviours, which often arise and persist in overlapping brain circuitries. First, we offer some practical considerations for combining long-term, behavioural paradigms with optogenetic or chemogenetic interventions. Next, we examine how cell-type or projection-specific manipulations to the ascending neuromodulatory systems, local brain region or descending cortical glutamatergic projections influence aspects of cognitive control. For this, we primarily focus on the influence exerted on attentional and motor impulsivity performance in the (3-choice or) 5-choice serial reaction time task, and impulsive, risky or inflexible choice biases during alternative preference, reward discounting or reversal learning tasks.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources