Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May;4(3):251-61.
doi: 10.1016/0168-1702(86)90004-3.

Spin-labeling of influenza virus hemagglutinin permits analysis of the conformational change at low pH and its inhibition by antibody

Spin-labeling of influenza virus hemagglutinin permits analysis of the conformational change at low pH and its inhibition by antibody

S Yoden et al. Virus Res. 1986 May.

Abstract

To study the conformational changes in the hemagglutinin (HA) molecule of A/seal/Mass/1/80 (H7N7) (Seal) influenza virus at low pH, a spin-labeling method was used. This method also permits study of antibody interaction with the HA. A synthetic nitroxide compound was used for spin-labeling of tyrosine residues of the isolated HA molecule. Electron spin resonance (ESR) spectra of the spin-labeled HA at various pH values indicated that a conformational transition occurred under acidic conditions, and around pH 5.8 the HA molecule has maximal flexibility. Since virus-induced hemolysis occurs optimally at pH 5.8-5.9, the HA molecule in the maximally flexible conformation is considered to mediate membrane fusion. The ESR spectra of the antibody-bound HA at various pH values revealed that monoclonal antibodies to different regions on the molecule may inhibit the conformational change by different modes. One antibody inhibited the changes in the HA that resulted in flexibility, while the other did not. These results support the assumption that monoclonal antibodies, which failed to inhibit hemagglutination of the virus yet neutralized viral infectivity, inhibited the fusion step in the viral replication process by interfering with a low pH-induced conformational change in the HA molecule (Kida, H., Webster, R.G. and Yanagawa, R. (1983) Arch. Virol. 76, 91-99).

PubMed Disclaimer

Publication types

LinkOut - more resources