Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Sep;25(9):2130-2143.
doi: 10.1038/s41380-018-0228-9. Epub 2018 Aug 31.

Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group

Abraham Nunes  1   2 Hugo G Schnack  3 Christopher R K Ching  4   5 Ingrid Agartz  6   7   8   9 Theophilus N Akudjedu  10 Martin Alda  1 Dag Alnæs  6   7 Silvia Alonso-Lana  11   12 Jochen Bauer  13 Bernhard T Baune  14 Erlend Bøen  8 Caterina Del Mar Bonnin  15 Geraldo F Busatto  16   17 Erick J Canales-Rodríguez  11   12 Dara M Cannon  10 Xavier Caseras  18 Tiffany M Chaim-Avancini  16   17 Udo Dannlowski  19 Ana M Díaz-Zuluaga  20 Bruno Dietsche  21 Nhat Trung Doan  6   7 Edouard Duchesnay  22 Torbjørn Elvsåshagen  6   23 Daniel Emden  19 Lisa T Eyler  24   25 Mar Fatjó-Vilas  11   12   26 Pauline Favre  22 Sonya F Foley  27 Janice M Fullerton  28   29 David C Glahn  30   31 Jose M Goikolea  15 Dominik Grotegerd  19 Tim Hahn  19 Chantal Henry  32 Derrek P Hibar  5 Josselin Houenou  22   33 Fleur M Howells  34   35 Neda Jahanshad  5 Tobias Kaufmann  6   7 Joanne Kenney  10 Tilo T J Kircher  21 Axel Krug  21 Trine V Lagerberg  6 Rhoshel K Lenroot  36   37 Carlos López-Jaramillo  20   38 Rodrigo Machado-Vieira  16   39 Ulrik F Malt  40   41 Colm McDonald  10 Philip B Mitchell  36   42 Benson Mwangi  39 Leila Nabulsi  10 Nils Opel  19 Bronwyn J Overs  28 Julian A Pineda-Zapata  43 Edith Pomarol-Clotet  11   12 Ronny Redlich  19 Gloria Roberts  36   42 Pedro G Rosa  16   17 Raymond Salvador  11   12 Theodore D Satterthwaite  44 Jair C Soares  39 Dan J Stein  45 Henk S Temmingh  45   46 Thomas Trappenberg  2 Anne Uhlmann  45   47 Neeltje E M van Haren  3   48 Eduard Vieta  15 Lars T Westlye  6   7   49 Daniel H Wolf  44 Dilara Yüksel  21 Marcus V Zanetti  16   17   50 Ole A Andreassen  6   7 Paul M Thompson  5 Tomas Hajek  51 ENIGMA Bipolar Disorders Working Group
Affiliations
Meta-Analysis

Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group

Abraham Nunes et al. Mol Psychiatry. 2020 Sep.

Abstract

Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.

PubMed Disclaimer

Conflict of interest statement

OAA received speaker’s honorarium from Lundbeck. JCS has participated in research funded by BMS, Forest, Merck, Elan, J&J consulted for Astellas and has been a speaker for Pfizer, Abbott and Sanofi. TE has received honoraria for lecturing from GlaxoSmithKlein, Pfizer, and Lundbeck. EV has received grants and served as consultant, advisor or speaker for the following entities: AB-Biotics, Allergan, Angelini, Dainippon Sumitomo Pharma, Farmindustria, Ferrer, Gedeon Richter, Janssen, Johnson and Johnson, Lundbeck, Otsuka, Pfizer, Roche, Sanofi-Aventis, Servier, the Brain and Behavior Foundation, the Seventh European Framework Programme (ENBREC), the Stanley Medical Research Institute, Sunovion, and Takeda. The remaining authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
a Performance of SVM classifiers independently trained on each sample – mean with 95% confidence interval. Each row denotes a site in the data set, whereas each column denotes a specific performance metric. b Meta-analytic (summary) receiver operating characteristic (SROC) curves. Site-level sensitivity (Sn) and specificity (Sp) are empty circles of radius proportional to sample size. The red point is the median estimate of Sn and Sp. The solid black line is the SROC curve. Dashed diagonal represents chance performance. The red ellipse is the 95% posterior credible region, and the blue dashed line is the 95% posterior predictive region. c Receiver operating characteristic (ROC) curves for the aggregate subject-level analysis. Faint gray lines are the ROC curves for individual validation folds, and blue lines represent the mean ROC curve
Fig. 2
Fig. 2
Violin plot of feature importance across cross-validation (CV) folds for aggregate subject-level analysis (left), and the site, which yielded the highest ROC-AUC (right). At each CV iteration, we extracted linear support vector machine (SVM) coefficients. The set of all coefficients from our SVM models are centered about 0. Deviation of coefficients from zero is an indication of the relative importance of individual features in the data. Features with positive and negative coefficients have positive and negative associations, respectively, with probability of classification as a case. The y axis lists variables for which SVM coefficients were strictly non-zero throughout all cross-validation iterations
Fig. 3
Fig. 3
Bar plot of the area under the receiver operating characteristic curve (ROC-AUC) for the leave-one-site-out (LOSO) analyses. The sites listed along the x axis are those that were held-out at each fold

Similar articles

  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group.
    Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro-de-Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng LL, Alda M, Almeida J, Alnaes D, Alonso-Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, Del Mar Bonnin C, Brambilla P, Canales-Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz-Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives-Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López-Jaramillo C, Machado-Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda-Zapata JA, Poletti S, Polosan M, Pomarol-Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, Soares JC, Stäblein M, Stein D… See abstract for full author list ➔ Ching CRK, et al. Hum Brain Mapp. 2022 Jan;43(1):56-82. doi: 10.1002/hbm.25098. Epub 2020 Jul 29. Hum Brain Mapp. 2022. PMID: 32725849 Free PMC article. Review.
  • Prediction of estimated risk for bipolar disorder using machine learning and structural MRI features.
    Mikolas P, Marxen M, Riedel P, Bröckel K, Martini J, Huth F, Berndt C, Vogelbacher C, Jansen A, Kircher T, Falkenberg I, Lambert M, Kraft V, Leicht G, Mulert C, Fallgatter AJ, Ethofer T, Rau A, Leopold K, Bechdolf A, Reif A, Matura S, Bermpohl F, Fiebig J, Stamm T, Correll CU, Juckel G, Flasbeck V, Ritter P, Bauer M, Pfennig A. Mikolas P, et al. Psychol Med. 2024 Jan;54(2):278-288. doi: 10.1017/S0033291723001319. Epub 2023 May 22. Psychol Med. 2024. PMID: 37212052
  • Using structural MRI to identify individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning study.
    Hajek T, Cooke C, Kopecek M, Novak T, Hoschl C, Alda M. Hajek T, et al. J Psychiatry Neurosci. 2015 Sep;40(5):316-24. doi: 10.1503/jpn.140142. J Psychiatry Neurosci. 2015. PMID: 25853284 Free PMC article.
  • Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group.
    Abé C, Ching CRK, Liberg B, Lebedev AV, Agartz I, Akudjedu TN, Alda M, Alnæs D, Alonso-Lana S, Benedetti F, Berk M, Bøen E, Bonnin CDM, Breuer F, Brosch K, Brouwer RM, Canales-Rodríguez EJ, Cannon DM, Chye Y, Dahl A, Dandash O, Dannlowski U, Dohm K, Elvsåshagen T, Fisch L, Fullerton JM, Goikolea JM, Grotegerd D, Haatveit B, Hahn T, Hajek T, Heindel W, Ingvar M, Sim K, Kircher TTJ, Lenroot RK, Malt UF, McDonald C, McWhinney SR, Melle I, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Opel N, Overs BJ, Panicalli F, Pfarr JK, Poletti S, Pomarol-Clotet E, Radua J, Repple J, Ringwald KG, Roberts G, Rodriguez-Cano E, Salvador R, Sarink K, Sarró S, Schmitt S, Stein F, Suo C, Thomopoulos SI, Tronchin G, Vieta E, Westlye LT, White AG, Yatham LN, Zak N, Thompson PM, Andreassen OA, Landén M; ENIGMA Bipolar Disorder Working Group. Abé C, et al. Biol Psychiatry. 2022 Mar 15;91(6):582-592. doi: 10.1016/j.biopsych.2021.09.008. Epub 2021 Sep 16. Biol Psychiatry. 2022. PMID: 34809987
  • Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions.
    Claude LA, Houenou J, Duchesnay E, Favre P. Claude LA, et al. Bipolar Disord. 2020 Jun;22(4):334-355. doi: 10.1111/bdi.12895. Epub 2020 Mar 20. Bipolar Disord. 2020. PMID: 32108409 Review.

Cited by

  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group.
    Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro-de-Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng LL, Alda M, Almeida J, Alnaes D, Alonso-Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, Del Mar Bonnin C, Brambilla P, Canales-Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz-Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives-Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López-Jaramillo C, Machado-Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda-Zapata JA, Poletti S, Polosan M, Pomarol-Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, Soares JC, Stäblein M, Stein D… See abstract for full author list ➔ Ching CRK, et al. Hum Brain Mapp. 2022 Jan;43(1):56-82. doi: 10.1002/hbm.25098. Epub 2020 Jul 29. Hum Brain Mapp. 2022. PMID: 32725849 Free PMC article. Review.
  • Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting.
    Leming MJ, Bron EE, Bruffaerts R, Ou Y, Iglesias JE, Gollub RL, Im H. Leming MJ, et al. NPJ Digit Med. 2023 Jul 13;6(1):129. doi: 10.1038/s41746-023-00868-x. NPJ Digit Med. 2023. PMID: 37443276 Free PMC article. Review.
  • The Role of Temperament Traits in Bipolar Disorder: Neuroimaging Study.
    Markin K, Trufanov A, Tarumov D, Krasichkov A, Shichkina Y, Kupriyanov M. Markin K, et al. Depress Anxiety. 2025 May 10;2025:5974860. doi: 10.1155/da/5974860. eCollection 2025. Depress Anxiety. 2025. PMID: 40384807 Free PMC article.
  • Translating research findings into clinical practice: a systematic and critical review of neuroimaging-based clinical tools for brain disorders.
    Scarpazza C, Ha M, Baecker L, Garcia-Dias R, Pinaya WHL, Vieira S, Mechelli A. Scarpazza C, et al. Transl Psychiatry. 2020 Apr 20;10(1):107. doi: 10.1038/s41398-020-0798-6. Transl Psychiatry. 2020. PMID: 32313006 Free PMC article.
  • Intrusive Traumatic Re-Experiencing Domain: Functional Connectivity Feature Classification by the ENIGMA PTSD Consortium.
    Suarez-Jimenez B, Lazarov A, Zhu X, Zilcha-Mano S, Kim Y, Marino CE, Rjabtsenkov P, Bavdekar SY, Pine DS, Bar-Haim Y, Larson CL, Huggins AA, Terri deRoon-Cassini, Tomas C, Fitzgerald J, Kennis M, Varkevisser T, Geuze E, Quidé Y, El Hage W, Wang X, O'Leary EN, Cotton AS, Xie H, Shih C, Disner SG, Davenport ND, Sponheim SR, Koch SBJ, Frijling JL, Nawijn L, van Zuiden M, Olff M, Veltman DJ, Gordon EM, May G, Nelson SM, Jia-Richards M, Neria Y, Morey RA. Suarez-Jimenez B, et al. Biol Psychiatry Glob Open Sci. 2023 Jun 8;4(1):299-307. doi: 10.1016/j.bpsgos.2023.05.006. eCollection 2024 Jan. Biol Psychiatry Glob Open Sci. 2023. PMID: 38298781 Free PMC article.

References

    1. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21:718–79. - PubMed
    1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86. - PubMed
    1. Bschor T, Angst J, Azorin JM, Bowden CL, Perugi G, Vieta E, et al. Are bipolar disorders underdiagnosed in patients with depressive episodes? Results of the multicenter BRIDGE screening study in Germany. J Affect Disord. 2012;142:45–52. - PubMed
    1. Ghaemi SN, Sachs GS, Chiou AM, Pandurangi AK, Goodwin K. Is bipolar disorder still underdiagnosed? Are antidepressants overutilized? J Affect Disord. 1999;52:135–44. - PubMed
    1. Duffy A, Alda M, Hajek T, Grof P. Early course of bipolar disorder in high-risk offspring: prospective study. Br J Psychiatry. 2009;195:457–8. - PubMed

Publication types