Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 1:649:75-89.
doi: 10.1016/j.scitotenv.2018.08.262. Epub 2018 Aug 21.

Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017

Affiliations

Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017

Siqin Tong et al. Sci Total Environ. .

Abstract

Due to global warming, extreme climate events have become an important issue, and different geographical regions have different sensitivities to climate change. Therefore, temporal and spatial variations in extreme temperature and precipitation events in Inner Mongolia were analyzed based on the daily maximum temperature, minimum temperature, and precipitation data during the period of 1960-2017. The results showed that warm extreme indices, such as SU25, TX90p, TN90p, and WSDI, significantly increased, whereas the cold extreme indices, such as FD0, TX10p, TN10p, and CSDI, significantly decreased; all indices have obvious abrupt changes based on the Mann-Kendall test; nighttime warming was higher than daytime warming. Extreme precipitation indices slightly decreased overall. All of the extreme temperature and precipitation indices had long-range correlations based on detrended fluctuation analysis (a > 0.5), thereby indicating that the extreme climate indices will maintain their current trend directions in the future. ENSO, AO, and IOD had a strong positive influence on warm extremes and a strong negative influence on cold extremes in Inner Mongolia. NCEP/NCAR and ERA-20CM reanalysis showed that strengthening anticyclone circulation, increasing geopotential height, decreasing daytime cloudiness and increasing nightime cloudiness contributed to changes in climate extremes in Inner Mongolia.

Keywords: Atmospheric circulation; Detrended fluctuation analysis; Extreme climate events; Influence; Inner Mongolia; Spatial and temporal variation.

PubMed Disclaimer

LinkOut - more resources