Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Dec;121(Pt 1):51-56.
doi: 10.1016/j.envint.2018.08.059. Epub 2018 Aug 30.

Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance

Affiliations
Free article
Review

Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance

Kenichi Azuma et al. Environ Int. 2018 Dec.
Free article

Abstract

Scientific literature and documents pertaining to the effects of inhalation exposure to carbon dioxide (CO2) on human health and psychomotor performance were reviewed. Linear physiological changes in circulatory, cardiovascular, and autonomic systems on exposure to CO2 at concentrations ranging from 500 to 5000 ppm were evident. Human experimental studies have suggested that short-term CO2 exposure beginning at 1000 ppm affects cognitive performances including decision making and problem resolution. Changes in autonomic systems due to low-level exposure to CO2 may involve these effects. Further research on the long-term effects of low-level CO2 exposure on the autonomic system is required. Numerous epidemiological studies indicate an association between low-level exposure to CO2 beginning at 700 ppm and building-related symptoms. Respiratory symptoms have been indicated in children exposed to indoor CO2 concentrations higher than 1000 ppm. However, other indoor comorbid pollutants are possibly involved in such effects. In the context of significant linear increase of globally ambient CO2 concentration caused by anthropogenic activities and sources, reducing indoor CO2 levels by ventilation with ambient air represents an increase in energy consumption in an air-conditioned building. For the efficient energy control of CO2 intruding a building from ambient air, the rise of atmospheric CO2 concentration needs to be urgently suppressed.

Keywords: Carbon dioxide; Indoor air; Low-level exposure; Physiological change; Psychomotor performance.

PubMed Disclaimer

Publication types

MeSH terms