Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 17:9:1880.
doi: 10.3389/fmicb.2018.01880. eCollection 2018.

Colistin Resistance Mediated by mcr-1 in ESBL-Producing, Multidrug Resistant Salmonella Infantis in Broiler Chicken Industry, Italy (2016-2017)

Affiliations

Colistin Resistance Mediated by mcr-1 in ESBL-Producing, Multidrug Resistant Salmonella Infantis in Broiler Chicken Industry, Italy (2016-2017)

Virginia Carfora et al. Front Microbiol. .

Erratum in

Abstract

Colistin-resistance mediated by mobilisable and plasmid-borne mcr genes has emerged worldwide, threatening the efficacy of colistin, a last resort antibiotic increasingly used for treating human invasive infections by multidrug-resistant or extensively drug-resistant Enterobacteriaceae. In this study, we report the first evidence of mcr-1-mediated colistin resistance in four multidrug resistant (MDR) out of 324 Salmonella infantis from the Italian antimicrobial resistance (AMR) monitoring (2001-2017) in broilers and broiler meat. Two were also Extended Spectrum Beta-Lactamases (ESBL)-producing isolates. Characterization by whole genome sequencing (WGS), located mcr-1.1 on an incX4 plasmid. Phylogenetic analysis of these isolates with selected Italian S. Infantis previously isolated from animals, meat and human clinical cases with unknown epidemiological relationship, demonstrated that ESBL-producing, mcr-1-positive isolates belonged to the emerging pESI-like-positive-ESBL-producing clone described in Italy in 2015.

Keywords: ESBL (Extended Spectrum Beta-Lactamases); Salmonella Infantis; broiler meat; broilers; colistin resistance; mcr genes; plasmids; whole genome sequencing.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Single-nucleotide polymorphism (SNP)-based phylogeny of 16 selected ESC-resistant, ESBL-producing, and ESC-susceptible Salmonella Infantis mainly from broiler chicken, broiler meat, and humans in Italy (2006–2017). Colors of the isolate ID indicate the sample host: red: human; purple: broiler meat; blue: broiler chicken; pink: pig; green: guinea fowl. Full purple dot: presence of the mutation D87G in the gyrA gene; empty purple dot: presence of the mutation S83Y in the gyrA gene. Full green dot: presence of blaCTX−M−1 ESBL gene; Empty green dot: presence of blaCTX−M−65 ESBL gene. Full light blue dot: presence of mcr-1.1. Numbers in the figure indicate the number of SNPs difference between two isolates or between clusters. Two clusters were identified based on the number of SNPs: Cluster A, with a difference of 1-18 SNPs between the isolates, and Cluster B with a difference of 7 SNPs between the isolates. Isolates of Cluster A and Cluster B differed at least by 42 SNPs. Details of the 16 isolates are indicated in the Supplementary Table 1.

References

    1. Alba P., Leekitcharoenphon P., Franco A., Feltrin F., Ianzano A., Caprioli A., et al. (2018). Molecular epidemiology of mcr-encoded colistin resistance in Enterobacteriaceae from food-producing animals in Italy revealed through the EU harmonised antimicrobial resistance monitoring. Front. Microbiol. 9:1217 10.3389/fmicb.2018.01217 - DOI - PMC - PubMed
    1. Aviv G., Tsyba K., Steck N., Salmon-Divon M., Cornelius A., Rahav G., et al. . (2014). A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ. Microbiol. 16, 977–994. 10.1111/1462-2920.12351 - DOI - PubMed
    1. Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 - DOI - PMC - PubMed
    1. Borowiak M., Fischer J., Hammerl J. A., Hendriksen R. S., Szabo I., Malorny B. (2017). Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi, B. J. Antimicrob. Chemother. 72, 3317–3324. 10.1093/jac/dkx327 - DOI - PubMed
    1. Carattoli A., Villa L., Feudi C., Curcio L., Orsini S., Luppi A., et al. . (2017). Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 22:30589. 10.2807/1560-7917.ES.2017.22.31.30589 - DOI - PMC - PubMed

LinkOut - more resources