Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986 Sep;45(10):2493-9.

Free radicals of acetaminophen: their subsequent reactions and toxicological significance

  • PMID: 3017768
Review

Free radicals of acetaminophen: their subsequent reactions and toxicological significance

R P Mason et al. Fed Proc. 1986 Sep.

Abstract

The oxidation of acetaminophen to the corresponding phenoxyl free radical and N-acetyl-p-benzoquinone imine by mammalian peroxidases is discussed. The acetaminophen free radical is very reactive--forming dimers, and, ultimately, melanin-like polymeric products. A model compound, leading to more stable metabolites, can be obtained by introduction of methyl groups next to the oxygen, to produce 3,5-dimethylacetaminophen. The electron spin resonance spectrum of this free radical could be completely analyzed. The phenoxyl radical of the dimethyl analog does not form polymers or bind with nucleophiles. N-Acetyl-p-benzoquinone imine, a hepatic metabolite of acetaminophen, and its analog N-acetyl-3,5-dimethyl-p-benzoquinone imine are metabolized by rat liver microsomes and NADPH to their corresponding p-aminophenoxyl free radicals. The p-aminophenoxyl free radical formation could be suppressed by the deacetylase inhibitors sodium fluoride and paraoxon. Substitution of NADPH-cytochrome P-450 reductase for rat liver microsomes eliminates the deacetylase activity and results in the direct reduction of N-acetyl-3,5-dimethyl-p-benzoquinone imine to the 3,5-dimethylacetaminophen phenoxyl free radical. Neither the acetaminophen nor the 3,5-dimethylacetaminophen phenoxyl radical reduces oxygen to form superoxide or reacts with oxygen in any other detectable way.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources