Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep 15;137(6):1897-903.

Leukocyte inhibitory factor (LIF) potentiates neutrophil responses to formyl-methionyl-leucyl-phenylalanine

  • PMID: 3018081

Leukocyte inhibitory factor (LIF) potentiates neutrophil responses to formyl-methionyl-leucyl-phenylalanine

L Borish et al. J Immunol. .

Abstract

The ability of purified (80,000-fold) human leukocyte inhibitory factor (LIF) to modulate several formyl-methionyl-leucyl-phenylalanine (f-met-leu-phe)-induced neutrophil functions was evaluated. Although not affecting directed migration itself, at low concentrations (1/2 to 2 U/ml), LIF was demonstrated to potentiate chemotaxis induced by f-met-leu-phe (40.3% +/- 8.1) and to reduce the concentration of f-met-leu-phe necessary for maximal chemotaxis (10(-8) to 10(-9) M). Similarly, LIF did not directly induce the respiratory burst, but potentiated both superoxide generation (151.6% +/- 77) and hydrogen peroxide production (54.9% +/- 15.5) in the presence of f-met-leu-phe (10(-7) M). LIF was also shown to induce degranulation of neutrophil-specific granules in a dose-dependent manner. Neutrophil-specific granules have been shown to contain an intracellular pool of receptors for f-met-leu-phe, and on degranulation provide the surface membrane with a fresh source of receptors. Our data suggested that LIF potentiation of neutrophil stimulation by f-met-leu-phe might be mediated, at least in part, by increasing the number of available membrane receptors as a result of its ability to induce degranulation. Radioligand receptor analysis using f-met-leu-[3H] phe was performed, and LIF was shown to mediate an increase in receptors for f-met-leu-phe from an average of 18,600 on untreated cells to 27,000 after pretreatment with LIF. This increase in receptors could "sensitize" the neutrophils for f-met-leu-phe and possibly explain the potentiation of neutrophil stimulation observed in the presence of the ligand. LIF was also found to have a more generalized effect on the transduction of neutrophil activation stimuli, mediating a 35.8% increase in superoxide production after exposure to calcium ionophore. The data do not permit a determination as to whether the increase in receptor number is responsible for the potentiation of f-met-leu-phe-mediated function, or whether this occurs secondary to the more generalized effect on neutrophil stimulation transduction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources