Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep;59(5):285-296.
doi: 10.4111/icu.2018.59.5.285. Epub 2018 Aug 31.

Immune checkpoint inhibitors for urothelial carcinoma

Affiliations
Review

Immune checkpoint inhibitors for urothelial carcinoma

Hyung Suk Kim et al. Investig Clin Urol. 2018 Sep.

Abstract

Urothelial carcinoma (UC), originating in the bladder or upper urinary tract, is the most common histological type of cancer. Currently, platinum-based cytotoxic chemotherapy is the standard treatment for metastatic UC (mUC) and the preferred treatment option in the perioperative (neoadjuvant and/or adjuvant) setting of muscle invasive bladder cancer (MIBC). In addition, intravesical bacillus Calmette-Guerin immunotherapy or chemotherapy is applied as the adjuvant therapeutic option in non-muscle invasive bladder cancer (NMIBC) after transurethral resection, to prevent recurrence and progression. In recent years, with an increased understanding of cancer immunobiology, systemic immunotherapies targeting immune checkpoint inhibition has been explored and clinically used in the area of UC. The programmed cell death 1 receptor (PD-1) and its ligand (PD-L1) are important negative regulators of immune activity, preventing the destruction of normal tissues and autoimmunity. To date, five immune checkpoint inhibitors blocking PD-1 (pembrolizumab, nivolumab) or PD-L1 (atezolizumab, durvalumab, and avelumab) have been approved by the United States Food and Drug Administration (US-FDA) for first- or second-line use in mUC, based on durable therapeutic response and manageable safety profiles observed in relevant clinical trials. In addition, the clinical use of several immune checkpoint inhibitors is currently being tested for MIBC and NMIBC. In this article, we review the current and ongoing clinical trials, regarding immune checkpoint inhibitors, being conducted in various clinical settings of UC, including mUC, MIBC, and NMIBC.

Keywords: Immunotherapy; PD-1 inhibitor; PD-L1 inhibitor; Urinary bladder neoplasms.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST: The authors have nothing to disclose.

References

    1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–1403. - PubMed
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. - PubMed
    1. Jung KW, Won YJ, Kong HJ, Lee ES. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2015. Cancer Res Treat. 2018;50:303–316. - PMC - PubMed
    1. Clark PE, Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, et al. NCCN guidelines insights: bladder cancer, version 2.2016. J Natl Compr Canc Netw. 2016;14:1213–1224. - PMC - PubMed
    1. Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De Santis M, Bruins HM, et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2017;71:462–475. - PubMed

Publication types

MeSH terms